Gleitlagertechnik # **Composite Self-lubricating Bearings** | CSB-10: Steel bronze powder with PTFE/Pb dry bearings | P3, P35-42 | |--|-------------| | CSB-50: Steel bronze powder with PTFE dry bearings Without lead | P4, P43-46 | | CSB-LA10: Aluminum alloy bronze powder with PTFE/fibre dry bearings Without lead | P5, P47-50 | | CSB-10DH: Steel bronze powder with PTFE/fibre dry bearings Without lead | P6 | | CSB-10HP: Steel bronze powder with PTFE/fibre dry bearings | P7 | | CSB-11: Bronze backed with bronze powder PTFE/Pb dry bearings | P8, P51-54 | | CSB-30: Stainless steel bronze powder with PTFE/fibre dry bearings Without lead | P9, P55-57 | | CSB-40: Steel bronze powder with PTFE//fibre dry bearings Without lead | P10, P58-61 | | CSB-20: Steel bronze powder with POM marginal bearings | P11, P62-66 | | CSB-22: Steel bronze powder with PVDF marginal bearings | P12, P67-69 | | CSB-80: Steel bronze powder with PEEK/PTFE marginal bearings | P13, P70-72 | | CSB-12/32: 2 layer dry bearings | P14 | | CSB-FR/3S: Metal mesh with PTFE layer | P15 | | CSB-FD: Bronze powder with PTFE tape | P15 | | CSB-TEX: Steel with PTFE fibre fabric | P16 | # Metallic Self-lubricating Bearings | CSB650: Cast bronze with graphite oilless bearings | P17-18, P73-P78 | |--|-----------------| | CSB600: Solid bronze turned bearings | P19 | | CSB250: Cast iron with graphite oilless bearings | P20, P79-82 | | CSB200: Hard steel with special treatment slide bearings | P21 | |---|----------------| | CSB-090(FB090): Bronze wrapped bearings | P22, P83-86 | | CSB-09G(FB09G): Bronze with graphite wrapped bearings | P23 | | CSB-T90(FT090): Bronze wrapped bearings with through holes | P24, P87-90 | | CSB850S: Metal backed with bronze alloy graphite oilless bearings | P25, P91-96 | | CSB850BM: Metal backed with bronze graphite oilless bearings | P26-27, 97-100 | | CSB-800(JF-800): Steel with bronze powder bimetal bearings | P28, P101-104 | | CSB450: Steel with bronze high precision bearings | P29, P105-106 | | CSB-SNF: Powder sintered bearings | P30 | # The others | JOCU: Oilless unit parts |
P31, P107-109 | |--------------------------|-------------------| | The other new materials |
P31 | # **Plastic Compound Bearings** CSB-EP: Plastic compound bearings ------ P32-34, P111-114 ### CSB-10 Steel bronze powder with PTFE/Pb dry bearings Dimensions of Standard Products See P35~42 #### **Features** Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. High chemical resistance, low absorption of water and swelling. Also performs well with lubrication. #### **Structure** - 1. PTFE/Pb mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE-lead mixture. - 3. Low-carbon steel, gives exceptionally high load carrying capacity, excellent heat dissipation. - 4. Copper/Tin plating 0.002mm, provides good corrosion resistance. | Tech. Data | | | | | | | | | |----------------|----------------------|----------------------|--|----------------------------------|------------------------|--------------------------------------|--|--| | | Static | 250N/mm ² | | Friction co | pefficient | 0.03~0.20 | | | | Max. Load | Very low speed | | | Dry running | 2m/s | | | | | Max. Load | Rotating oscillating | 60N/mm² | | Max.
speed | Hydrodynamic operation | >2m/s | | | | Max. PV
dry | Short-term operation | 3.6N/mm²*m/s | | Thermal conductivity | | 42 W(m*K) ⁻¹ | | | | running | Continuous operation | 1.8N/mm²*m/s | | Coefficient of thermal expansion | | 11*10 ⁻⁶ *K ⁻¹ | | | | Temp. limit | | -195℃~+280℃ | | | | | | | ## **Typical Application** Can meet the demanding criteria for long life and troublefree performance with or without lubrication. **Automotive:** tractors, combines, crop sprayers, earthmovers, graders and other construction, auto machines, specific uses in power steering cylinders, steering gear thrust washers, disc brakes, calipers and pistons, shock absorbers, governor linkage, windshield wiper motor, tilt gear assemblies... **Business machines:** photocopy machines, typewriters, mail sorters, postage meter systems, computer terminal printers and peripheral equipment, automatic printing devices, mail processing machinery... **Hydraulics and valves:** pumps including gear, rotary, water, axial piston, and other types, ball, butterfly, poppet steam, and other valves and valve trunnions... **Home appliances:** tape recorders, refrigerators, air conditioners, cleaners, polishers, sewing machines, ovens, dishwashers, clothes washing machines... And materials handling, marine engine, packaging, textile equipment, tools... # **CSB-50** Steel bronze powder with PTFE dry bearings Dimensions of Standard Products See P43~46 ### **Features** The features same as CSB-10 but without lead, Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. High chemical resistance, lower absorption of water and swelling. Also performs well with lubrication. #### **Structure** - **1.PTFE fibres mixture 0.01~0.03mm,lead-free** provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture. - 3.Steel backing, provides high load carrying capacity, excellent heat dissipation. - 4. Copper/Tin plating 0.002mm, provides good corrosion resistance. | Tech. Data | | | | | | | | | |----------------|----------------------|----------------------|--|----------------------------------|------------------------|---|--------------------------------------|--| | | Static | 250N/mm ² | | Friction coefficient | | (| 0.03~0.20 | | | Max. Load | Very low speed | 140N/mm ² | | | Dry running | 2 | 2m/s | | | Max. Load | Rotating oscillating | 60N/mm² | | Max.
speed | Hydrodynamic operation | | >2m/s | | | Max. PV | Short-term operation | 3.6N/mm²*m/s | | Thermal conductivity | | 4 | 42 W(m*K) ⁻¹ | | | dry
running | Continuous operation | 1.8N/mm²*m/s | | Coefficient of thermal expansion | | 1 | 11*10 ⁻⁶ *K ⁻¹ | | | Temp. limit | | -195℃~+280℃ | | | | | | | ### **Typical Application** The CSB-50 have same application as the normal CSB-10 type bearings, but much more for automotive industry, food industry, medicine machines, drink machines and so on which not allowed use the lead and difficulty forming the oil film or need dry lubrication parts. # CSB-LA10 Aluminum alloy bronze powder with PTFE/fibre Dimensions of Standard Products See P47~50 #### **Features** This material structure enables the final goods have more light and easy installation. Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary, directing and oscillating movement. ### **Structure** - **1. PTFE/fibre mixture 0.01~0.03mm,** provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE layer mixture. - 3. Aluminum alloy, gives good load carrying capacity, excellent heat dissipation. | Tech. Data | | | | | | | | | | |----------------|------------------------|---------------------------|-------------|----------------------|------------------------|--------------------------------------|--|--|--| | | Static | 100N/mm ² | | Friction co | pefficient | 0.03~0.20 | | | | | Max. Load | Very low speed 50N/mm² | | Dry running | 2m/s | | | | | | | Max. Load | Rotating oscillating | 20N/mm ² | | Max.
speed | Hydrodynamic operation | >2m/s | | | | | Max. PV
dry | Short-term operation | 2.8N/mm ² *m/s | | Thermal conductivity | | 150W(m*K) ⁻¹ | | | | | running | Continuous operation | 1.8N/mm²*m/s | | Coefficien expansion | t of thermal | 24*10 ⁻⁶ *K ⁻¹ | | | | | Temp. limit | | -195℃~+200℃ | | | | | | | | ### **Typical Application** CSB-LA10 have much lower weight can be applied in OA machineries, fitness equipments, bicycle, food industry machines, packaging machineries etc. # **CSB-10DH** Steel bronze powder with PTFE/fibre dry bearings Dimensions of Standard Products See CSB-10 #### **Features** Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. ### **Structure** - 1. PTFE/fibre mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture. - 3. Low-carbon steel, gives exceptionally high load carrying capacity, excellent heat dissipation. - 4. Copper/Tin plating 0.002mm, provides good corrosion resistance. | Tech. Data | | | | | | | | | |----------------|-------------------------|---------------------------|-------------
----------------------------------|------------------------|-----|------------------------------------|--| | | Static | 250N/mm ² | | Friction co | oefficient | 0.0 | 05~0.20 | | | Max. Load | Very low speed 140N/mm² | | Dry running | 2n | n/s | | | | | Max. Load | Rotating oscillating | 60N/mm² | | Max.
speed | Hydrodynamic operation | >2 | ?m/s | | | Max. PV | Short-term operation | 3.6N/mm ² *m/s | | Thermal conductivity | | 42 | ? W(m*K) ⁻¹ | | | dry
running | Continuous operation | 1.8N/mm²*m/s | | Coefficient of thermal expansion | | 11 | *10 ⁻⁶ *K ⁻¹ | | | Temp. limit | | -195℃~+280℃ | | | | | | | ## **Typical Application** The material have same application like normal CSB-10 material, but typical application for automotive industry like door hinges, trunk hinges, bonnet hinges, dampers, seats etc. # CSB-10HP Steel bronze powder with PTFE/fibre dry bearings Dimensions of Standard Products See CSB-10 ### **Features** The new material CSB-10HP have been developed for high load with high speed under lubrication. The special resin can support high PV value with lower friction and good wear resistance. The speed can be up to 5m/s, PV up to 60N/mm²*m/s. ### **Structure** - **1. PTFE/fibre** mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE layer mixture. - 3. Low-carbon steel, gives exceptionally high load carrying capacity, excellent heat dissipation. - 4. Copper/Tin plating 0.002mm, provides good corrosion resistance. | Tech. Data | | | | | | | | | |-----------------|----------------|---------------------------|--|----------------------|---------------|--------------------------------------|--|--| | | Static | 250N/mm ² | | Temp. lim | nit | -195℃~+280℃ | | | | Max. Load | Very low speed | 140N/mm ² | | Friction c | oefficient | 0.03~0.20 | | | | | Rotating | 60N/mm² | | N4 - | Dry running | 2m/s | | | | | oscillating | | | Max.
speed | Hydrodynamic | >5m/s | | | | | Short-term | 3.6N/mm ² *m/s | | | operation | Z011//S | | | | Max. PV
dry | operation | | | Thermal conductivity | | 42W(m*K) ⁻¹ | | | | running | Continuous | 1.8N/mm²*m/s | | morman | | 72 (111 10) | | | | | operation | 1.0IV/IIIII III/S | | | nt of thermal | 11*10 ⁻⁶ *K ⁻¹ | | | | PV hydrodynamic | | 60N/mm ² *m/s | | expansion | | 11°10 °K | | | ### **Typical Application** This new material can work for high PV value application with oil lubrication, and also well performance under dry lubrication. The typical application like gear pump, vane pump, shock absorber, gear motor, axial and radial piston pumps etc. The inner side of bushes can design oil groove or holes for performance oil lubricating (detail please refer CSB oil groove notice). # CS B-1 1 Bronze backed with bronze powder PTFE/Pb dry bearings Dimensions of Standard Products See P51~54 **Structure** - 1.PTFE/Pb mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - 2.Sintered bronze powder 0.20-0.35mm, provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE-lead mixture. - 3.Bronze backing, gives exceptionally high load carrying capacity, excellent heat dissipation. Have very good corrosion resistance. ### **Features** Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. Very high chemical resistance, low absorption of water and swelling. Also performs well with lubrication. Bronze backing provides improved corrosion resistance compared with CSB-10. | Tech. Data | | | | | | | | | |-------------|----------------------|---------------------------|------|----------------------------------|------------------------|--------------------------------------|--|--| | | Static | 250N/mm ² | | Friction c | coefficient | 0.03~0.20 | | | | Max. Load | Very low speed | Very low speed 140N/mm² | Max. | Dry running | 2m/s | | | | | IVIAX. LUAU | Rotating oscillating | 60N/mm² | | speed | Hydrodynamic operation | >2m/s | | | | Max. PV | Short-term operation | 3.6N/mm ² *m/s | | Thermal | conductivity | 70W(m*K) ⁻¹ | | | | running | Continuous operation | 1.8N/mm²*m/s | | Coefficient of thermal expansion | | 17*10 ⁻⁶ *K ⁻¹ | | | | Temp. limit | | -195℃~+280℃ | | | | | | | ### **Typical Application** Can meet the demanding criteria for long life and troublefree performance with or without lubricant, of high safety factor even... Same as the CSB-10 BUSHING, But especially for high chemical resistance request. Steel metallurgy industry such as bushes for roller grooves of successive casting machines, cement grouting pumps and screw conveyers for cement, it can also be composed in steel housing or fabricated into flanged bushes which can move both in radial and in axial directions. The bearings are particularly appropriate for high temperature environment where no oil is efficient and the machine must be under successive long period working condition. ### CSB-30 Stainless steel bronze powder with PTFE dry bearings Dimensions of Standard Products See P55~57 #### **Features** Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. Very high chemical resistance, low absorption of water and swelling. Also performs well with lubrication. Stainless steel backing provides improved corrosion resistance compared with CSB-10/11. #### **Structure** - **1.PTFE** polymer fibres mixture 0.01~0.03mm, lead-free provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture. - 3.Stainless steel backing, provides high load carrying capacity, very high level of resistance in corrosive environments. | Tech. Data | | | | | | | | | |----------------------------------|-------------------------|---------------------------|-----|-----------------------------------|-----------|-------------------------|--------------------------------------|--| | | Static | 250N/mm ² | | Temp. limit | | | -195°C~+280°C | | | Max. Load | very low speed 140N/mm² | | N/a | | / running | 2m/s | | | | | Rotating oscillating | 60N/mm² | | Max. speed Hydrodynamic operation | | | >2m/s | | | Max. PV
drv | Short-term operation | 3.6N/mm ² *m/s | | Thermal conductivity | | 42 W(m*K) ⁻¹ | | | | running | Continuous operation | 1.8N/mm ² *m/s | | Coefficient of thermal expansion | | | 15*10 ⁻⁶ *K ⁻¹ | | | P\/ may hvo | drodynamic | 20N/mm²*m/o | | Friction | | Dry | 0.08~0.20 | | | PV max. hydrodynamic 30N/mm²*m/s | | coefficient | | Hydrodynamic | 0.02~0.08 | | | | # **Typical Application** The high level of resistance in corrosion environment provides good application for chemical industry like chemical valve, chemical pump, flow meter, food industry, medicine industry, seawater/water lubrication parts etc. # **CSB-40** Steel bronze powder with PTFE/fibre dry bearings Dimensions of Standard Products See P58~61 ### **Features** Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. High chemical resistance, low absorption of water and swelling. The CSB-40 improved the friction and much good wear resistance over the common CSB-10 under lubricated operation. #### **Structure** - **1.PTFE** polymer fibres mixture 0.01~0.03mm,lead-free provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film. - **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture. - **3.Steel backing,** provides high load carrying capacity, excellent heat dissipation. - **4.Copper/Tin plating 0.002mm,** provides good corrosion resistance. | Tech. Data | | | | | | | | | |----------------------|----------------------|--------------------------|-------------|----------------------------------|--------------|--------------|--------------------------------------|-------| | | Static | 250N/mm ² | | Temp. limi | it | | -195°C~+280°C | | | Max. Load | Very low speed | 140N/mm ² | | Max.
speed | | y running | 2m/s | | | | Rotating oscillating | 60N/mm² | | | | Hydrodynamic | | >2m/s | | Max. PV
dry | Short-term operation | 3.6N/mm²*m/s | | Thermal conductivity | | | 42 W(m*K) ⁻¹ | | | running | Continuous operation | 1.8N/mm²*m/s | | Coefficient of thermal expansion | | | 11*10 ⁻⁶ *K ⁻¹ | | | DV may hyd | DV may hydradynamia | | | Friction | | Dry | 0.08~0.20 | | | PV max. hydrodynamic | | 30N/mm ² *m/s | coefficient | | Hydrodynamic | 0.02~0.08 | | | ### **Typical Application** Developed for high duty, oil lubricated, hydraulic applications... Automotive suspension struts, shock absorbers guide bushing, hydraulic cylinders, gear pumps and motors and axial and radial piston pumps and motors. CSB-40 is designed for use mainly under lubricated lubrications and shows excellent wear resistance, low static and dynamic friction coefficient. ### CSB-20 Steel bronze powder with POM marginal bearings Dimensions of Standard Products See P62~66 ### **Features** Suitable for rotary and oscillating movement, lower maintenance requirements due to the long
re-lubrication intervals, lower wear, lower susceptibility to edge loading, no absorption of water and therefore no swelling, good damping behaviours, good resistance to shock loads. ### Structure - **1.POM 0.30~0.50mm,** has high wear resistance and low friction even only minute quantities of lubricant are supplied, this bearing surface carries a pattern of circular indents which should be filled with grease on assembly of the bearing. - **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the resin mixture. - **3.Low-carbon steel,** gives exceptionally high load carrying capacity, excellent heat dissipation. - **4.Copper plating 0.002mm,** good c o r r o s i o n resistance. | Tech. Data | | | | | | | | | | |--|-------------------------|--------------------------------------|---------------|--------------------------|-------|------------------------|--|--|--| | Static | | 250N/mm ² | | Temp. lim | it | -40°C~+110°C | | | | | Max. Load | Very low speed 140N/mm² | Pre-lubricated | 2m/s | | | | | | | | Rotating | 70N/mm² | '0N/mm² | Max.
speed | Oiling continuous Grease | >2m/s | | | | | | Max. PV | Max. PV 3N/n | | | Thermal conductivity | | 4 W(m*K) ⁻¹ | | | | | Coefficient of thermal expansion | | 11*10 ⁻⁶ *K ⁻¹ | | Friction coefficient | | 0.05~0.20 | | | | | Initial pre-lubrication at assembly required | | | | | | | | | | ## **Typical Application** Recommended for applications involving intermittent operation or boundary lubrication... **Automotive:** suspension joints, kingpin assemblies and stub axles of tucks, automobile driving joint hinges, steering and other linkages, articulation joints, rear chassis hinges, fair leader rollers... Machine tool building industry: spindles in drill, grinding, and milling machines, ram guide plates in multiram presses... **Agricultural equipment:** gearbox, clutch, bale trips and wheel caster swivels for bale accumulators, front axle pivot bearings, steering idler box bearings and kingpin bearings for harvesters... Be especially well-suited for applications where lubricant can not be supplied continuously or repeatedly. # **CSB-22** Steel bronze powder with PVDF marginal bearings Dimensions of Standard Products See P67~69 ### **Features** The special resin supply with excellent wear resistance and very lower friction, can be keep good work condition even no oil giving. This material can be produce as CSB-20 with the oil pocket for oil/grease containing. To get much high tolerance of the ID, the resin surface can be machine again after the bushes fitting. The applications including metallurgy machines, ming machines, irrigation work, automotive industries, agriculture machines. ### **Structure** - **1.PVDF/PTFE 0.30~0.50mm,** has high wear resistance and low friction even only minute quantities of lubricant are supplied, this bearing surface carries a pattern of circular indents which should be filled with grease on assembly of the bearing. - **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the resin mixture. - **3.Low-carbon steel,** gives exceptionally high load carrying capacity, excellent heat dissipation. 4.Copper plating 0.002mm, good corrosion resistance. | Tech. Data | | | | | | | | | | |--|----------------------|--------------------------------------|--|----------------------|-----------------------------|------------------------|--|--|--| | | Static | 250N/mm ² | | Temp. limi | t | -50°C~+160°C | | | | | Max. Load | Very low speed | 140N/mm ² | | Max.
speed | Pre-lubricated | 2m/s | | | | | Rotating | Rotating oscillating | 70N/mm² | | | Oiling
Grease continuous | >3m/s | | | | | Max. PV | Max. PV | | | Thermal conductivity | | 4 W(m*K) ⁻¹ | | | | | Coefficient of thermal expansion | | 11*10 ⁻⁶ *K ⁻¹ | | Friction coefficient | | 0.03~0.20 | | | | | Initial pre-lubrication at assembly required | | | | | | | | | | # **Typical Application** Recommended for applications involving intermittent operation or boundary lubrication... **Automotive:** suspension joints, kingpin assemblies and stub axles of tucks, automobile driving joint hinges, steering and other linkages, articulation joints, rear chassis hinges, fair leader rollers... Machine tool building industry: spindles in drill, grinding, and milling machines, ram guide plates in multiram presses... **Agricultural equipment:** gearbox, clutch, bale trips and wheel caster swivels for bale accumulators, front axle pivot bearings, steering idler box bearings and kingpin bearings for harvesters... Be especially well-suited for applications where lubricant can not be supplied continuously or repeatedly. ### CSB-80 Steel bronze powder with PEEK/PTFE marginal bearings Dimensions of Standard Products See P70~72 #### **Features** - 1. CSB-80 provides maintenance-free operation - 2. Operate satisfactorily without lubrication under light duty and low speed - 3. CSB-80 has a high PV capability under high temperature - 4. Temperature be allowance from -150 °C ~+250 °C - 5. Good chemical resistance - 6. High static and dynamic load capacity - 7. No water absorption - 8. Suitable for rotating, oscillating, reciprocating and sliding movement. #### **Structure** - **1.PEEK+PTFE 0.30~0.50mm,** gives high wear resistance and low friction even only minute quantities of lubricant are supplied. This bearing surface carries a pattern of circular indents which should be filled with grease on assembly of the bearing. - **2.Bronze layer 0.20~0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE/PEEK mixture. - 3. Steel backing, provides mechanical strength and high load carrying capacity. - 4. Copper/Tin plating 0.002mm, provides good corrosion resistance. | Tech. Data | | | | | | | | | | |-------------|----------------------|---------------------------|--|----------------------------------|-----------------------------|--------------------------------------|--|--|--| | | Static | 250N/mm ² | | Friction | coefficient | 0.03~0.20 | | | | | Max. Load | Very low speed | 140N/mm ² | | Max | Pre-lubricated | 2m/s | | | | | iviax. Load | Rotating oscillating | 60N/mm² | | | Oiling
Grease continuous | >2m/s | | | | | May BV | Short-term operation | 3.6N/mm ² *m/s | | Thermal conductivity | | 50 W(m*K) ⁻¹ | | | | | Max. PV | Continuous operation | 1.8N/mm²*m/s | | Coefficient of thermal expansion | | 11*10 ⁻⁶ *K ⁻¹ | | | | | Temp. limit | | -150℃~+250℃ | | | | | | | | CSB-80 is a composite bearing material, developed specifically to operate with marginal lubrication and consists of three bonded layers. It is designed for marginally lubricated operation, and is capable of # CSB-12/32 2 layer dry bearings #### **Structure** CSB-12 consists of a steel shell, laminated with compounded PTFE tape. This material structure enables the final goods have more light. It is widely used like automotive door hinges, trunk hinges, engines cover hinges , bicycle pedal and office machines etc which need dry lubrications. CSB-32 is same as CSB-12, but with stainless steel backing which provides good corrosion resistance. It is widely been used in chemical industries, medical industries, food industries etc. ### **Features** This material structure enables the final goods have more light and easy installation. Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary, directing and oscillating movement. It is widely been used in chemical industries, medical industries, food industries, textile machines, OA machines, door/window hinges etc. | Tech. Data | | | | | | | | | | |-----------------------|--------------|-----------------|-------|----------------------|---------|----------------------|--|--|--| | | Backing I | Material | | Max. Load | Static | 120N/mm ² | | | | | Standard
Thick, mm | CSB-12 | CSB-32 | | IVIAX. LUAU | Dynamic | 80N/mm ² | | | | | THICK. HIHI | Carbon steel | Stainless steel | steel | Dry | 1m/s | | | | | | 0.50 | * | | | Max. Seepd | Oil | >1m/s | | | | | 0.75 | * | * | | Temp. | | -195℃~+180℃ | | | | | 1.00 | * | * | | Friction coefficient | | 0.03~0.20 | | | | | 1.50 | * | | | | | | | | | # CSB-FR/3S Metal mesh with PTFE layer ### **Structure** CSB-FR consist of a metal mesh shell, laminated with compounded PTFE tape. This material structure enables the final goods have more light and easy for install. It is widely been used in chemical industries, medical industries, food industries, textile machines, OA machines, door/window hinges etc. we can supply Bronze mesh (CSB-FRB), stainless steel mesh (CSB-FRS) as the backing material. ### **Structure** CSB-3S consists of a stainless steel mesh shell laminated with compounded PTFE tape. This material structure enables the final goods have more light. The stainless steel provides good corrosion resistance. It is widely been used in chemical industries like chemical valves, medical industries, food industries etc. # **CSB-FD** Bronze powder with PTFE tape #### **Structure** CSB-FD consist of PTFE with bronze powder and additive material, this material structure enable the final goods have more light and easy for install. It is widely been used in chemical industries, medical industries, fluid hydraulic industries, textile machines, OA machines, door/window hinges etc. # **CSB-TEX** Steel with PTFE fibre fabric Dimensions as CSB-20 standard size ### **Structure** This new material use the PTFE fibres fabric overlay on metal backings, the fabric have very high load capacity and much longer operating life compare with conventional 3-layer bushes. The metal can be carbon steel (CSB-TEX), stainless steel (CSB-TEX3), bronze (CSB-TEXB) etc. ###
Features Suitable for rotary and oscillating movement, lower maintenance requirements due to the long re-lubrication intervals, lower wear, lower susceptibility to edge loading, no absorption of water and therefore no swelling, good damping behaviours, good resistance to shock loads. much long service life under lower speed with high load. | Tech. Data | | | | | | | | | |------------|------------|---------------------------|----------------------|-------------------------------------|--|--|--|--| | May Load | Static | 350N/mm ² | Temp. | -50℃~+250℃ | | | | | | Max. Load | Dynamic | 180N/mm ² | Friction coefficient | 0.03~0.20 | | | | | | Max. Speed | Dry | 0.5m/s | Thermal conductivity | 42W(m*k) ⁻¹ | | | | | | Max. Speed | Grease | >1m/s | Thermal conductivity | 42VV(III K) | | | | | | Max. PV | Short-term | 3.6N/mm ² *m/s | Coefficient | 11*10 ⁻⁶ k ⁻¹ | | | | | | (Dry) | Continuous | 1.8N/mm ² *m/s | of thermal expansion | 11"10 K | | | | | ### **Typical Application** Now have been used like suspension and auxiliary of agriculture and construction machines, cranes and hydraulic and mechanical jibs, ball butterfly and sluice valves, water pumps, chemical industries etc. # **CSB650** Cast bronze with graphite oilless bearings ### Structure 650# material is made of strong cast bronze based metal with special solid lubricants embedded. The base metal withstands high load and the solid lubricants provide for self-lubrication. The bearing shows excellent performance without pre-lubrication under conditions of extreme high/lower temperature with low speed. This material provides a maintenance-free bearing solution, particularly for high load, intermittent of oscillating motion. ### **Features** - 1. May work without any oil for long period - 2. Extremely high load capacity, good anti-wear and lower friction - 3. Particularly appropriate for low speed and high load - 4. Suitable for reciprocating, oscillation or intermittent motion where oil film is hard to be formed - 5. Good chemical resistant and anti-corrosion characteristics - 6. Can be used in wide range of temperature from -40 $^{\circ}\mathrm{C}$ ~+300 $^{\circ}\mathrm{C}$ ### **Typical Application** This kind of bearing can be applied under dry, high temperature, high pressure, corrosive, water or other chemical environments when no oil can be introduced. Now is widely be used in automotive products line, water engineering, dam gate, plastic industries, successive casting machines, steel rollers in metallurgy industry, mineral machines, ships, turbo generators, hydraulic turbines and injection molding machines... # **CSB650** Cast bronze with graphite oilless bearings | Main metal type | | | | | | |------------------------------------|----------------------------|-------------------------|-------------------------|-------------------------|----------------------------------| | CSB Standard | 650# Strong
cast bronze | 650S1
Copper alloy | 650S2
Copper alloy | 650S3
Copper alloy | 650S5 Special strong cast bronze | | Cu% | 65 | 85 | 80 | 88 | 65 | | Sn% | | 5 | | 12 | | | Pb% | | 5 | | | | | Zn% | 25 | 5 | | | 25 | | Ni% | | | 5 | | | | AI% | 6 | | 10 | | 6 | | Fe% | | | 5 | | | | Mn% | 4 | | | | 4 | | Density | 8.0 | 8.8 | 7.6 | 8.8 | 8.0 | | Hardness HB | >210 | >70 | >150 | >80 | >250 | | Tensile strength N/mm ² | >750 | >200 | >500 | >270 | >800 | | Elongation% | >12 | >15 | >10 | >8 | >4 | | Coefficient of linear expansion | 1.9*10⁻⁵/℃ | 1.8*10⁻⁵/℃ | 1.6*10⁻⁵/℃ | 1.8*10⁻⁵/℃ | 1.9*10⁻⁵/℃ | | Friction coefficient | 0.03~0.20 | 0.03~0.18 | 0.03~0.20 | 0.03~0.18 | 0.03~0.20 | | Thermal conductivity | 60 W(m*K) ⁻¹ | | Limit Temp. | 300℃ | 400℃ | 400℃ | 400℃ | 300℃ | | Max. load N/mm ² | 100 | 60 | 50 | 70 | 150 | | Max. speed m/min | 15 | 10 | 20 | 10 | 10 | | Max. PV N/mm ² *m/min | 200 | 200 | 200 | 200 | 200 | For special heavy load application, CSB also can supply the strong cast bronze of special high hardness 650HP. The material can be up to HB270~300. | Solid Lubricants | | | | | | | | |------------------------------|--|---|--|--|--|--|--| | Lubricant | Features | Typical application | | | | | | | SL1
Graphite+add | Excellent resistance against chemical attacks and low friction. Temp limit 400°C | Suite for general machines and under atmosphere | | | | | | | SL4
PTFE+MOS ₂ | Lower in friction and good for water lubrication, Temp. limit 300 ℃ | Suite for water/sea lubrication, like ship, hydraulic turbine, gas turbine etc. | | | | | | # **CSB600** Solid bronze turned bearings ### **Structure** Machined Cast bronze bearings offer technically and economically favourable bearings solutions. High loading capability, low weight, good corrosion resistance. CSB can offered different type bronze alloys according to the life time, service etc. The tolerance is much tighter than wrapped bronze bushes. # Oil groove | Tech. Data | | | | | | | | | |-------------------------------|----|------|-------|-------|-------|-------|-------|-------| | Material | | 600 | 600S1 | 600S2 | 600S3 | 600S4 | 600S5 | 600S6 | | | Cu | 65 | 85 | 80 | 88 | 80 | 65 | 76 | | | Sn | | 5 | | 12 | 10 | | 8 | | | Pb | | 5 | | | 10 | | 15 | | Composition 0/ | Zn | 25 | 5 | | | | 25 | | | Composition % | Ni | | | 5 | | | | 1 | | | Al | 6 | | 10 | | | 6 | | | | Fe | | | 5 | | | | | | | Mn | 4 | | | | | 4 | | | Density | | 8.0 | 8.8 | 7.6 | 8.8 | 8.9 | 8.0 | 9.1 | | Yield point N/mm ² | 2 | >350 | >90 | >260 | >150 | >100 | >450 | >80 | | Tensile strength N/mm² | | >750 | >200 | >500 | >270 | >210 | >800 | >180 | | Elongation % | | >12 | >15 | >10 | >5 | >8 | >4 | >8 | | Hardness HB | | >210 | >70 | >150 | >80 | >75 | >250 | >60 | # CSB250 Cast iron with graphite oilless bearings Dimensions of Standard Products See P79~82 ### **Structure** 250# material is made of cast iron based metal with special lubricants embedded. The base metal withstands high load and the solid lubricants provide for self-lubrication. The bearing shows excellent performance without pre-lubrication under conditions of extreme high/lower temperature with lower speed. ### **Features** This material provides a maintenance-free bearing solution, particularly for high load, intermittent of oscillating motion. Solid lubricants within cast iron combines the high load with the wear resistance and low friction. The application including automotive products line, mold & die, plastic industries etc. | Tech. Data | | | | | | | | | |------------|--------------|---------------------------|----------------------|----------------------|--|--|--|--| | Max. Load | Static | 70N/mm ² | Tensile strength | 150N/mm ² | | | | | | Max. Loau | Dynamic 1 | 10N/mm ² | Temp. | -40℃~+400℃ | | | | | | May Speed | Dry | 0.15m/s | Friction coefficient | 0.08~0.20 | | | | | | Max. Speed | Hydrodynamic | 0.25m/s | Hardness | HB > 160 | | | | | | Max. PV | | 0.8N/mm ² *m/s | | | | | | | ### **Typical Application** This type products can be widely used under high temperature and high load with low speed conditions. like kind of mould, machinery assembly line, automotive assembly line, automotive mold, steel miller, plastic industries and so on. ### **CSB200** Hard steel with special treatment slide bearings ### **Structure** Carbon steel machined slide bearings, the oil groove can be produced according to the bearing work condition if needed. The bushes have been treated by special techniques have high load capacity with lower friction and excellent wear resistance. #### **Features** High load capacity over 150N/mm², Suitable for rotary and oscillating movement, lower maintenance requirements due to long re-lubrication intervals, excellent wear resistance under high load with lower speed. Good resistance to shock loads, good characteristics when operating in the presence of abrasive media or dirty environment.Initial pre-lubrication at assembly required.We can supply the parts as your detail drawings. | Tech. Data | | | | | | | | | |----------------|---------------------------|---------------------------|----------------------------|-------------------------------------|--|--|--|--| | Max. Load | Static | 250N/mm ² | Hardness | HRC>50 | | | | | | Dynami | Dynamic | 150N/mm² | Elongation | 15% | | | | | | Max. Speed | | 0.6m/s | Temp. | -100℃~+200℃ | | | | | | Max. PV | | 1.2N/mm ² *m/s | Friction coefficient | 0.05~0.25 | | | | | | Tensile streng | Tensile strength 400N/mm² | | Thermal conductivity | 60W(m*k) ⁻¹ | | | | | | Yield point | | 300N/mm ² | Coef. of thermal expansion | 15*10 ⁻⁶ k ⁻¹ | | | | | ## **Typical Application** This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines, agriculture machines, refuse truck, plastic machines, steel industries etc. # CSB-090(FB090) Bronze wrapped bearings Dimensions of Standard Products See P83~86 ### **Structure** The bearings are wrapped of a cold formable homogenous bronze (CuSn8), which will obtain exceptional material properties. The standard size are fitted with diamond shaped lubrication indents on the bearing surface. These indents serve as lubricant reservoirs to rapidly build up a lubrication film in the start movement and therewith reduce the start friction. The material suitable for constructions, agriculture etc where high load and slow movement are occurring. | Chemical compositions | | | | | | | | | |-----------------------|------|-----|-----|-----|-----|--|--|--| | Material type | Cu% | Sn% | P% | Pb% | Zn% | | | | | CSB-090 | 91.3 | 8.5 | 0.2 | 1 | 1 | | | | | Tech. Data | | | | | | | | | |----------------|---------------------------|---------------------------|----------------------------|-------------------------------------|--|--|--|--| | Max. Load | Static | 120N/mm ² | Hardness | HB 110-150 | | | | | | IVIAX.
LOAG | Dynamic | 40N/mm² | Elongation | 40% | | | | | | Max. Speed | | 2m/s | Temp. | -100℃~+200℃ | | | | | | Max. PV | | 2.8N/mm ² *m/s | Friction coefficient | 0.08~0.25 | | | | | | Tensile streng | Tensile strength 450N/mm² | | Thermal conductivity | 60W(m*k) ⁻¹ | | | | | | Yield point | | 250N/mm ² | Coef. of thermal expansion | 15*10 ⁻⁶ k ⁻¹ | | | | | ### **Feature** - 1. Easy of fitting and lubrication - 2. High load capacity - 3. Possibility of producing items, inner side can be machined - 4. High level thermal conductivity - 5. Minimum overall dimensions - 6. Chemical resistance Initial pre-lubrication at assembly required... ### **Typical Application** This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines. It can be fabricated into bushes, half bearings, flanged bushes, trust washers, spherical bearing so on. # CSB-09G(FB09G) Bronze with graphite wrapped bearings Dimensions of Standard Products as CSB-090 #### **Structure** The same produce process and application as CSB-090 type material except overlay the solid lubricants into the diamond shaped lubrication indents on the bearing surface, which will offer good friction at the start and process works and keep good condition even no oil giving at short time. So can be used in construction machines, gears, automotive clutch parts etc. | Chemical of | composition | s | | | | |---------------|-------------|-----|-----|-----|-----| | Material type | Cu% | Sn% | P% | Pb% | Zn% | | CSB-09G | 91.3 | 8.5 | 0.2 | 1 | 1 | | Tech. Data | | | | | | | | | | |---------------------------|---------|---------------------------|------------------------------------|------------------------|--|--|--|--|--| | Manual Static | | 120N/mm ² | Hardness | HB>110 | | | | | | | Max. Load | Dynamic | 40N/mm² | Elongation | 40% | | | | | | | Max. Speed | | 2.5m/s | Temp100℃~+ | | | | | | | | Max. PV | | 2.8N/mm ² *m/s | Friction coefficient | 0.05~0.25 | | | | | | | Tensile strength 450N/mm² | | 450N/mm ² | Thermal conductivity | 60W(m*k) ⁻¹ | | | | | | | Yield point | | 250N/mm ² | Coef. of thermal expansion 15*10-6 | | | | | | | #### **Feature** - 1. Easy of fitting and lubrication - 2. High load capacity - 3. Excellent wear resistance with lower friction - 4. High level thermal conductivity - 5. Minimum overall dimensions - 6. Chemical resistance - 7. Can be worked under dry/marginal lubrication at short time, have much lower friction factor at initial moving Initial pre-lubrication at assembly required... ### **Typical Application** This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines. # CSB-T90(FT090) Bronze wrapped bearings with through holes Dimensions of Standard Products See P87~90 ### **Structure** CSB-T90 derive from CSB-090 bearings, but with the difference that the indentations on the sliding surface are replaced by through-holes which have a greater capacity to collect the lubricant compared with the indentations. These indents serve as lubricant reservoirs to rapidly build up a lubrication film in the start movement and therewith reduce the start friction. The material suitable for constructions, agriculture etc where high load and slow movement are occurring. The bearing surface of the CSB-T90 should be reduced by 15% in consideration of the through-holes. | Chemical | Chemical compositions | | | | | | | | | | | |---------------|-----------------------|-----|-----|-----|-----|--|--|--|--|--|--| | Material type | Cu% | Sn% | P% | Pb% | Zn% | | | | | | | | CSB-T90 | 91.3 | 8.5 | 0.2 | 1 | 1 | | | | | | | | Tech. Data | | | | | | | | | | |-------------------------|---------|---------------------------|--|----------------------------|------------------------|--|--|--|--| | May Lood | Static | 120N/mm ² | | Hardness | HB 110-150 | | | | | | Max. Load | Dynamic | 40N/mm ² | | Elongation | 40% | | | | | | Max. Speed | | 2.5m/s | | Temp. | -100℃~+200℃ | | | | | | Max. PV | | 2.8N/mm ² *m/s | | Friction coefficient | 0.08~0.25 | | | | | | Tensile strength 450N/i | | 450N/mm ² | | Thermal conductivity | 60W(m*k) ⁻¹ | | | | | | Yield point | | 250N/mm ² | | Coef. of thermal expansion | 15*10⁻⁶k⁻¹ | | | | | #### **Features** - 1. Easy of fitting and lubrication - 2. High load capacity - 3. Excellent wear resistance with lower friction - 4. High level thermal conductivity - 5. Minimum overall dimensions - 6. Chemical resistance - 7. Extended service life and lubrication intervals than normal CSB-090 type bearings - 8. Free choice of lubricant - 9. Collection of dust and rub off particles in the holes Initial pre-lubrication at assembly required... ### **Typical Application** This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines. It can be fabricated into bushes, half bearings, flanged bushes, trust washers, spherical bearing so on. # **CSB850S** Metal backed with bronze alloy graphite oilless bearings Dimensions of Standard Products See P91~96 #### Structure CSB850S is a composite multi-layer bearing composed of special sintered material used as sliding surfaces and steel material as backing metal. Sintered layers are of a special copper-nickel alloy containing uniformly dispersed solid lubricant, the main component of which is graphite. The solid lubricants will be released at the bearing surface as wear occurs, this will ensure have lower coefficient of friction during operation. In addition, these sintered layers have been processed by the oil impregnation treatment. #### **Features** Pertinence for motions of any direction due to solid lubricant dispersed evenly, with high performance even for very small motions. Apply for self-lubrication work condition, to aid lower start friction, we recommend to pre-lubricated if possible. Oiling would be drastically reduced. Very good load capacity with good wear resistance and lower friction, can be machined again after the parts fixed to get much high tolerance. | Tech. Data | | | | | | | | | | |------------|-------------|---------------------------|----------------------|-------------------------------------|--|--|--|--|--| | Mov Lood | Static | 150N/mm ² | Temp. | -150℃~+250℃ | | | | | | | Max. Load | Dynamic | 100N/mm ² | Friction coefficient | 0.1~0.30 | | | | | | | Max. Speed | Dry | 0.5m/s | Alloy hardness | >45HB | | | | | | | Max. Speed | Lubrication | >1m/s | Alloy Hardriess | 240ND | | | | | | | Max. PV | Dry | 1.5N/mm ² *m/s | Coefficient | 14*10 ⁻⁶ k ⁻¹ | | | | | | | | Lubrication | 2.5N/mm ² *m/s | of thermal expansion | 14" 10" K | | | | | | ### **Typical Application** This material have been widely used in high load with lower friction and good wear resistance requested mechanical parts which oil given is difficulty. like automotive Die wear plate, industrial robots, injection wear plate, injection Tie-bar bushes, construction machines self-lubricating bearings etc. # CSB850BM Metal backed with bronze graphite oilless bearings Dimensions of Standard Products See P97~100 #### **Structure** 1.Sinter bronze powder with graphite: good wear resistance with lower friction and excellent load carrying capacity. Can be machined after fitting to get precision tolerance. CSB also can supply the bearings with PTFE or graphite sprayed layer on the work surface to get much lower start friction. 2. Metal backing: gives exceptionally high load carrying capacity, excellent heat dissipation. 3.Copper plating **0.002mm**, good corrosion resistance. #### **Features** CSB850BM metal backed bronze with graphite lined bearing materials, sintered layers are of special copper alloy containing uniformly dispersed solid lubricants. The solid lubricant will be released at the bearing surface as wear occurs. To aid the running-in process, a thin film of solid lubricant can be applied to the bearing surface. This will be ensure a consistently low coefficient of friction with total freedom from stick-slip, even from initial assembly. The inner side can be machined after the parts fixed to get high tolerance. ### Final machine after assembly CSB850BM bearings with running-in film are pre-finished and should not e machined. In the event of damage during assembly, the spray material can be available for on-site repair. The standard CSB850BM bearings can be manufactured, these material supplied without a running-in film, can be applied after final machining. The machined layer can not be exceed the sintered layer. # CSB850BM Metal backed with bronze graphite oilless bearings | Tech. Data | | | | | | | | | | | | |----------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|--|--|--|--| | CSB standar | d material | CSB850BM1 | CSB850BM2 | CSB850BM3 | CSB850BM4 | | | | | | | | Backing Met | al | steel | steel | stainless steel | Bronze | | | | | | | | | Composition | CuSn12+Gr | CuSn12Pb2+Gr | CuSn12+Gr | CuSn12+Gr | | | | | | | | Lining layer | Solid Lubricants | 6% | 10% | 6% | 6% | | | | | | | | Liffing layer | Hardness | >40HB | >40HB | >40HB | >40HB | | | | | | | | | Compressive strength | 300N/mm ² | 300N/mm ² | 300N/mm ² | 300N/mm ² | | | | | | | | Max. Load | Static | 150N/mm ² | 120N/mm ² | 150N/mm ² | 150N/mm ² | | | | | | | | IVIAX. LOAU | Dynamic | 100N/mm ² | 80N/mm ² | 100N/mm ² | 100N/mm ² | | | | | | | | Max. Speed | | 0.5m/s | 0.5m/s | 0.5m/s | 0.5m/s | | | | | | | | Max. PV | Max. PV | | 1.5 | 1.5 | 1.5 | | | | | | | | Friction coeff | ficient | 0.1~0.3 | 0.06~0.3 | 0.1~0.3 | 0.1~0.3 | | | | | | | | Temp. ℃ | | -150~+250 | -150~+250 | -150~+250 | -150~+250 | | | | | | | ### **Bearing surface** The standard bearings we supply as plain surface, also we supply with cleaning grooves for small angular movements or in the presence of abrasive
media or dirt, and indented surface for grease lubricated applications. Lubrication pocket Indented surface for grease lubricated applications. Cleaning grooves for small angular movements or in the presence of abrasive media or dirt. ### **Typical Application** The special structure of the material suitable for hostile environments, for high load application which lubrication is difficult. Now CSB850BM has been widely used in water turbines, vane controls, injection molding machinery, packing machines, construction equipment, tire moulds, paper production machinery, furnace expansion plates, automotive transmission, heavy lifting chain linkage, food production equipment etc. # **CSB-800** Steel with bronze powder bimetal bearings Dimensions of Standard Products See P101~104 ### **Structure** - **1.Sinter bronze powder:** good wear resistance and excellent load carrying capacity. - **2. Steel backing:** gives exceptionally high load carrying capacity, excellent heat dissipation. - **3.Copper plating 0.002mm**, good corrosion resistance. ### **Features** Steel backed lead bronze lined bearing material for lubricated applications, high load capacity and good fatigue properties, have been widely used in automotive, common industrial like steering gear, power steering, pedal bushes, king-pin bushes, tailgate pivots, mechanical handling, lifting equipment, hydraulic motors, agricultural machines etc. | Chemical compositions | | | | | | | | | | |-----------------------|-------------------|------------------------|----------------|--|--|--|--|--|--| | Material | Alloy composition | International standard | Alloy Hardness | | | | | | | | CSB-800 | CuPb10Sn10 | JIS-LBC3/SAE-797 | HB70-100 | | | | | | | | CSB-720 | CuPb24Sn4 | JIS-LBC6/SAE-799 | HB45-70 | | | | | | | | CSB-700 | CuPb30 | JIS-KJ3/SAE-48 | HB30-45 | | | | | | | | CSB-J20 | AlSn20Cu | JIS-AJL/SAE-783 | HB30-40 | | | | | | | | Tech. Data | | | | | | | | | | |-----------------|---------|---------------------------|----------------------------|-------------------------------------|--|--|--|--|--| | Max. Load | Static | 120N/mm ² | Yield Point | 240N/mm ² | | | | | | | Max. Load | Dynamic | 60N/mm ² | Temp. | -40℃~+250℃ | | | | | | | Max. Speed | | 2m/s | Friction coefficient | 0.08~0.20 | | | | | | | Max. PV 2.8N/mr | | 2.8N/mm ² *m/s | Thermal conductivity | 60W(m*k) ⁻¹ | | | | | | | Breaking Load | | 350N/mm ² | Coef. of thermal expansion | 14*10 ⁻⁶ k ⁻¹ | | | | | | ## **CSB450** Steel with bronze high precision bearings Dimensions of Standard Products See P105~106 ### **Structure** CSB450 is the Steel backed bronze alloy lined bearing material, the work surface can be produced the oil groove if requested which can improve the oil giving system. Characteristic compare with the traditional steel bushes this structure provides the material have lower friction, excellent wear resistance, higher temp. can bear etc. . Now the bearings have been succeed in the high speed mold & Die industries. ### **Structure** CSB450G the steel backed bronze alloy lined with solid lubricants for high load capacity and high speed application like the high speed press die etc. As the solid lubricants, so the bearing can be maintenance-free. CSB452G Iron cast backed with solid lubricant bearing material, suit for high load capacity and high speed application like the high speed press die etc. This material provides good delivery and lower cost compare with CSB450G. | Tech. Data | | | | |----------------------|---------------------------|---------------------------|---------------------------| | CSB Standard | CSB450 | CSB450G | CSB452G | | teSI e | ≥45HRC | ≥45HRC | Cast iron | | Bronze alloy | ≥80HB | ≥80HB | ≥160HB | | Max. Static load | 50N/mm ² | 50N/mm ² | 50N/mm ² | | Max. Dynamic load | 30N/mm ² | 30N/mm ² | 30N/mm ² | | Max. Speed | 1.2m/s | 2m/s | 1.5m/s | | Max. PV | 1.2N/mm ² *m/s | 1.8N/mm ² *m/s | 1.5N/mm ² *m/s | | Friction coefficient | 0.05~+0.20 | 0.03~+0.15 | 0.03~+0.15 | | Temp. (℃) | -50~+250 | -50~+250 | -50~+250 | # **CSB-SNF** Powder sintered bearings ### **Features** - 1. Good wear resistance with lower friction - 2. Lower maintenance requirement - 3. Lower the material cost for large production - 4. High speed with lower noise - 5. Can be machined again after installation if possible - 6. Can produced different structure as special request ### **Structure** The base material for sintered parts such as sliding bearings or other formed parts are iron, bronze, iron with bronze and other metal in powder form. This powder is formed under high pressure in dies into a temperature which is just below the melting point. According to the work condition, the bearings can impregnated different oil or solid lubricants for the self-lubricating. Sintered self-lubricating bearings are the ideal and economical solution for applications where lubrication is difficult or can not be given. ### **Tolerance** Inside Diameter ID: F7 Outside Diameter OD: r7 Flange Diameter: js13 Flange Thickness: js13 Length: js13 | Main m | Main material supply | | | | | | | | | | | | | |------------------|----------------------|----------|--------|---------|----------|-----|--------|------------------|-----------|-------------------------------|-------|--|--| | | | | Chemic | al comp | ositions | | | | Mechanica | l Properties | 3 | | | | Material
type | Fe | С | Cu | Sn | Zn | Pb | others | Density
g/cm³ | Oil
% | Pressure
stress
kgf/mm² | НВ | | | | SNF-11 | <0.5 | 0.5~2.0 | Remain | 5~7 | 5~7 | 2~4 | <1.5 | 6.4 | ≥18 | >15 | 20~50 | | | | SNF-12 | <0.5 | 0.5~2.0 | Remain | 5~7 | 5~7 | 2~4 | <1.5 | 6.8 | ≥12 | >20 | 30~60 | | | | SNF-21 | <0.5 | 0.5~2.0 | Remain | 8~11 | _ | | <1.0 | 6.0 | ≥25 | >15 | 25~55 | | | | SNF-22 | <0.5 | 0.5~2.0 | Remain | 8~11 | _ | | <1.0 | 6.4 | ≥18 | >20 | 35~65 | | | | SNF-31 | Remain | _ | 18~22 | _ | _ | _ | <3 | 6.0 | ≥18 | >30 | 30~60 | | | | SNF-32 | Remain | _ | 18~22 | _ | _ | _ | <3 | 6.4 | ≥12 | >35 | 40~70 | | | | SNF-41 | Remain | <1.0 | _ | _ | _ | _ | <3 | 6.0 | ≥18 | >15 | 30~60 | | | | SNF-42 | Remain | <1.0 | _ | _ | _ | _ | <3 | 6.4 | ≥12 | >20 | 40~70 | | | | SNF-51 | Remain | 0.25~0.6 | | 70~90 | | | | 6.4 | ≥18 | >30 | 30~60 | | | | SNF-52 | Remain | 0.25~0.6 | | 50- | ~70 | | <3 | 6.8 | ≥12 | >25 | 40~70 | | | # **JOCU** Oilless unit parts Dimensions of Standard Products See P107~109 This JOCU unit allows smooth removal of various core blocks at the desired angle with completely no lubrication. The CAM can be supply as special request. # The other materials ### **CSB-EP** Plastic compound bearings Dimensions of Standard Products See P111~114 ### **Structure** New economic self-lubricating bearings made by kinds of resin with additive fibre as base material produced by injection molding machines. The application for high load with lower speed and lower friction request, like automotive industries, lift machineries, copier, OA machines, sports machines, food industries, chemical machines etc. compare with the metal bushes, the weight and cost is much lower. Suite for large production with low cost and short delivery time. ### **Features** - 1. Design for dry and maintenance-free - 2. Lower friction, excellent wear resistance - 3. Higher load capacity - 4. Excellent chemical resistance - 5. Lower moisture absorption - 6. Thin wall thickness design, reduce the space and weight - 7. Can reduced cost when mass production - 8. No special request for matting material ### **Material selection** The user can select the bearing by temp. of work environment, wear resistance request, moving method, installation method, the cos of the material etc. Normally the temp., load and PV value should be firstly consideration. We recommend design lower PV value will leads to longer service life. Please select the correct one refer the attached material table. ### **Bearing Installation** we recommend the housing as H7 and the shaft as h9. The ID shown in the size table is after fitting in the ring gauge($\pm~0.002$ mm). The bearing, housing and fitting tools must be kept clean during fitting. To make the fit easy should be have the chamfer on the housing and shaft, if possible the pre-lubrication is much better for getting lower start friction. # **CSB-EP** Main materials supply | Designation | Test method | Unit | CSB-EP | CSB-EP1 | CSB-EP2 | CSB-EP3 | |---|-------------|-----------------------------------|-------------------|-------------------|-------------------|-----------| | Basic features | | | Normal | Special | Economic | Improved | | Common capability | | | | | | | | Density | ISO1183 | g/cm³ | 1.46 | 1.51 | 1.29 | 1.24 | | Dynamic friction /steel(dry) | | | 0.05~0.20 | 0.08~0.20 | 0.07~0.20 | 0.08~0.20 | | Max. PV (dry) | | N/mm²*m/s | 0.4 | 0.6 | 0.5 | 0.6 | | Mechanical capability | | | | | | | | Tensile strength | ISO527 | N/mm² | >40 | >42 | >45 | >60 | | Compressive strength | ISO527 | N/mm² | >75 | >70 | >80 | >100 | | E-module | ISO527 | N/mm² | >1300 | >1700 | >1500 | >1500 | | Max. static pressure of the surface, 20°C | | N/mm² | >70 | >70 | >70 | >100 | | Charpy notched impact strength 30 ℃ | ISO179-2 | Kj/m² | 3 | 3 | 10 | 11 | | Hardness, rockwell | ISO2039-2 | HRR | 108 | 115 | 111 | 107 | | Physical and thermal capaciability | | | | | | | | Continuous work temperature | | ${\mathbb C}$ | -40/+80 | -40/+100 | -40/+120 | -40/+150 | | Short-time work temperature | | $^{\circ}$ C | -70/+120 | -70/+150 | -70/+170 | -70/+200 | | Thermal conductivity | ASTME1461 | W/m.k | 0.20 | 0.25 | 0.25 | 0.20 | | Linear coef. Of thermal expansion | ASTMD696 | k ⁻¹ .10 ⁻⁵ | 10.0 | 8.0 | 10.0 | 9.0 | | Moisture absorption RH50/23℃ | ASTMD570 | % | 0.20 | 0.10 | 0.05 | 1.80 | | Electrically conductivity capability | | | | | | | | Volume resistivity | IEC60093 | Ω .cm | >1012 | >1014 | >1014 | >1012 | | Surface resistivity | IEC60093 | Ω | >10 ¹⁵ | >10 ¹⁵ | >10 ¹⁵ | >1012 | | Flammability | UL94
 | НВ | V-0 | V-0 | V-0 | | Colour | | | Dark Grey | Red brown | Olive | Grey | | Price level | | | 2 | 2 | 1 | 3 | | CSB-EP4 | CSB-EP5 | CSB-EP6 | CSB-EP7 | CSB-EP8 | CSB-EP9 | CSB-EP10 | |-------------------|---------------|-----------|-----------|------------|-----------------------|------------------| | Anti-corrosive | High function | Food-used | Anti-wear | Anti-water | Electric conductivity | High temperature | | | | | | | | | | 1.56 | 1.38 | 1.35 | 1.20 | 1.50 | 1.49 | 1.52 | | 0.10~0.30 | 0.09~0.25 | 0.05~0.18 | 0.09~0.20 | 0.08~0.25 | 0.09~0.25 | 0.05~0.20 | | 1.5 | 2.0 | 0.3 | 0.7 | 1.3 | 0.5 | 2.5 | | | | | | | | | | >60 | >65 | >40 | >65 | >60 | >40 | >70 | | >80 | >120 | >70 | >115 | >85 | >80 | >120 | | >3200 | >2000 | >1300 | >1500 | >3200 | >1500 | >2000 | | >85 | >110 | >70 | >110 | >90 | >75 | >110 | | 2 | 5 | 4 | 13 | 3 | 3 | 8 | | 118 | 120 | 108 | 108 | 117 | 113 | 121 | | | | | | | | | | -40/+200 | -100/+250 | -40/+80 | -40/+150 | -40/+200 | -40/+100 | -100/+300 | | -70/+240 | -130/+300 | -70/+120 | -70/+200 | -70/+240 | -70/+150 | -130/+400 | | 0.30 | 0.20 | 0.20 | 0.20 | 0.30 | 0.20 | 0.40 | | 4.0 | 7.0 | 10.0 | 9.0 | 3.0 | 9.5 | 2.5 | | 0.04 | 0.10 | 0.30 | 1.80 | 0.03 | 0.10 | 0.50 | | | | | | | | | | >10 ¹³ | >107 | >1012 | >1012 | >1013 | <10² | >1014 | | >1015 | >108 | >1015 | >1012 | >1015 | 1 | >1015 | | V-0 | V-0 | НВ | V-0 | V-0 | V-0 | V-0 | | Black | Black | White | Cream | Aubergine | Black | Black | | 4 | 5 | 1 | 3 | 4 | 3 | 6 | # CSB-10 Metric cylindrical bushes Unit:mm | Axle | Housing
H7 | OD
tolerance | ID after fixed | Wall
thick-
ness | f ₁ | f ₂ | L ⁰ _{-0.40} (d≤ \$30 L -0.3)
(d> \$30 L -0.4) | | | | | | | | | | | |--|---------------|---|------------------|------------------------|----------------|----------------|--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----| | | | | | | | | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | 6 -0.013
-0.028 | 8 +0.015 | 8 ^{+0.055}
+0.025 | 5.990
6.055 | 0.980 | 0.6 | 0.3 | CSB-10
0606 | CSB-10
0608 | CSB-10
0610 | | | | | | | | | | 8 ^{-0.013}
-0.028 | 10 +0.015 | 10 ^{+0.055} _{+0.025} | 7.990
8.055 | | | | CSB-10
0806 | CSB-10
0808 | CSB-10
0810 | CSB-10
0812 | CSB-10
0815 | | | | | | | | 10 -0.016 | 12 +0.018 | 12 ^{+0.065} _{+0.030} | 9.990
10.058 | | | | CSB-10
1006 | CSB-10
1008 | CSB-10
1010 | CSB-10
1012 | CSB-10
1015 | CSB-10
1020 | | | | | | | 12 ^{-0.016} _{-0.034} | 14 +0.018 | 14 ^{+0.065} _{+0.030} | 11.990
12.058 | | | | CSB-10
1206 | CSB-10
1208 | CSB-10
1210 | CSB-10
1212 | CSB-10
1215 | CSB-10
1220 | CSB-10
1225 | | | | | | 13 ^{-0.016} _{-0.034} | 15 +0.018 | 15 ^{+.0.065} _{+0.030} | 12.990
13.058 | | | | | | CSB-10
1310 | | | CSB-10
1320 | | | | | | | 14 ^{-0.016} _{-0.034} | 16 +0.018 | 16 +0.065 +0.030 | 13.990
14.058 | | | | | | 1410 | 1412 | 1415 | CSB-10
1420 | 1425 | | | | | | 15 ^{-0.016} _{-0.034} | 17 +0.018 | 17 ^{+0.065} _{+0.030} | 14.990
15.058 | | | | | | CSB-10
1510 | CSB-10
1512 | 1515 | CSB-10
1520 | 1525 | | | | | | 16 ^{-0.016} _{-0.034} | 18 +0.018 | 18 +0.065 +0.030 | 15.990
16.058 | | | | | | CSB-10
1610 | CSB-10
1612 | CSB-10
1615 | 1620 | CSB-10
1625 | | | | | | 17 ^{-0.016} _{-0.034} | 19 +0.021 | 19 ^{+0.075} _{+0.035} | 16.990
17.061 | | | | | | CSB-10
1710 | CSB-10
1712 | | CSB-10
1720 | | | | | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 20 +0.075 +0.035 | 17.990
18.061 | | | | | | CSB-10
1810 | CSB-10
1812 | CSB-10
1815 | CSB-10
1820 | CSB-10
1825 | | | | | | 20 -0.020 -0.041 | 23 +0.021 | 23 +0.035 | 19.990
20.071 | 1.475
1.505 | 0.6 | 0.4 | | | CSB-10
2010 | CSB-10
2012 | CSB-10
2015 | CSB-10
2020 | CSB-10
2025 | CSB-10
2030 | | | | | 22 -0.020 | 25 +0.021 | 25 ^{+0.075} _{+0.035} | 21.990
22.071 | | | | | | CSB-10
2210 | CSB-10
2212 | CSB-10
2215 | CSB-10
2220 | CSB-10
2225 | CSB-10
2230 | | | | | 24 -0.020 | 27 +0.021 | 27 ^{+0.075} _{+0.035} | 23.990
24.071 | | | | | | | | CSB-10
2415 | CSB-10
2420 | CSB-10
2425 | CSB-10
2430 | | | | | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 28 ^{+0.075} _{+0.035} | 24.990
25.071 | | | | | | CSB-10
2510 | CSB-10
2512 | CSB-10
2515 | CSB-10
2520 | CSB-10
2525 | CSB-10
2530 | 2540 | CSB-10
2550 | | | 28 -0.020 | 32 +0.025 | 32 ^{+0.085} _{+0.045} | 27.990
28.085 | 1.970 | 1.2 | 0.4 | | | | | CSB-10
2815 | CSB-10
2820 | CSB-10
2825 | CSB-10
2830 | CSB-10
2840 | | | | 30 -0.020 | 34 +0.025 | 34 +0.085 +0.045 | 29.990
30.285 | | | | | | | 3012 | CSB-10
3015 | 3020 | 3025 | 3030 | 3040 | | | | 32 ^{-0.025} _{-0.050} | 36 +0.025 | 36 ^{+0.085} _{+0.045} | 31.990
32.085 | | | | | | | | | CSB-10
3220 | | 3230 | CSB-10
3240 | | | | 35 ^{-0.025} _{-0.050} | 39 +0.025 | 39 ^{+0.085} _{+0.045} | 34.990
35.085 | | | | | | | CSB-10
3512 | 3515 | 3520 | CSB-10
3525 | 3530 | CSB-10
3540 | CSB-10
3550 | | | 38 -0.025 | 42 +0.025 | 42 ^{+0.085} _{+0.045} | 37.990
38.085 | | | | | | | | CSB-10
3815 | | | CSB-10
3830 | CSB-10
3840 | | | | 40 -0.025 | 44 +0.025 | 44 ^{+0.085}
+0.045 | 39.990
40.085 | | | | | | | CSB-10
4012 | | CSB-10
4020 | CSB-10
4025 | CSB-10
4030 | CSB-10
4040 | CSB-10
4050 | | # CSB-10 Metric cylindrical bushes #### Unit[·]mm | | | | | | | | | | | | | | | | U | nit:mm | |-----------------------|-----------------------|---|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|------------------|------------------| | Axle | Housing | | ID after | Wall
thick- | f ₁ | f ₂ | | | | | L. | 0
0.40 | | | | | | | | tolerance | | ness | 1 | 12 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | 115 | | 45 -0.025 | 50 +0.025 | 50 +0.085 +0.045 | 44.990
45.105 | | | | CSB-10
4520 | CSB-10
4525 | CSB-10
4530 | CSB-10
4540 | CSB-10
4550 | | | | | | | | | 55 ^{+0.100} _{+0.055} | | | | | CSB-10
5020 | | CSB-10
5030 | CSB-10
5040 | CSB-10
5050 | CSB-10
5060 | | | | | | | | 60 +0.100 +0.055 | | 0.400 | | | | | CSB-10
5530 | CSB-10
5540 | CSB-10
5550 | CSB-10
5560 | | | | | | | | 65 +0.100 +0.055 | | 2.460
2.505 | | 0.6 | | | CSB-10
6030 | CSB-10
6040 | CSB-10
6050 | CSB-10
6060 | CSB-10
6070 | | | | | | | 70 +0.100 +0.055 | | | | | | | CSB-10
6530 | CSB-10
6540 | CSB-10
6550 | CSB-10
6560 | CSB-10
6570 | | | | | | | 75 ^{+0.100} _{+0.055} | | | | | | | | CSB-10
7040 | CSB-10
7050 | CSB-10
7060 | CSB-10
7070 | CSB-10
7080 | | | | | | 80 +0.100 +0.055 | | | | | | | CSB-10
7530 | CSB-10
7540 | CSB-10
7550 | CSB-10
7560 | CSB-10
7570 | CSB-10
7580 | | | | | | 85 +0.120 +0.070 | | | | | | | | CSB-10
8040 | CSB-10
8050 | CSB-10
8060 | CSB-10
8070 | CSB-10
8080 | CSB-10
80100 | | | | | 90 +0.120 +0.070 | | | | | | | | CSB-10
8540 | | CSB-10
8560 | | CSB-10
8580 | CSB-10
85100 | | | | | 95 +0.120 +0.070 | | 2.440
2.490 | | | | | | CSB-10
9040 | CSB-10
9050 | CSB-10
9060 | | CSB-10
9080 | CSB-10
90100 | | | | | 100+0.120 | | | | 0.6 | | | | | CSB-10
9550 | CSB-10
9560 | | CSB-10
9580 | CSB-10
95100 | | | | | 105 ^{+0.120} _{+0.070} | | | | | | | | | CSB-10
10050 | CSB-10
10060 | | CSB-10
10080 | | CSB-10
100115 | | 105 _{-0.035} | 110 ^{+0.035} | 110 ^{+0.120} _{+0.070} | 105.020
105.155 | | | | | | | | | CSB-10
10560 | | CSB-10
10580 | | CSB-10
105115 | | 110 -0.035 | | | | | | | | | | | | CSB-10
11060 | | CSB-10
11080 | | CSB-10
110115 | | | | 125 ^{+0.170} _{+0.100} | | | | | | | | | | CSB-10
12060 | | CSB-10
12080 | CSB-10
120100 | | | | | 130+0.170 | | | | | | | | | | CSB-10
12560 | | | CSB-10
125100 | CSB-10
125115 | | | | 135 ^{+0.170} _{+0.100} | | 2.415 | | 0.6 | | | | | | CSB-10
13060 | | CSB-10
13080 | CSB-10
130100 | | | | | 145 ^{+0.170} _{+0.100} | | 2.465 | 1.0 | 0.0 | | | | | | CSB-10
14060 | | CSB-10
14080 | CSB-10
140100 | | | | | 155 ^{+0.170} _{+0.100} | | | | | | | | | | CSB-10
15060 | | CSB-10
15080 | CSB-10
150100 | | | 160 _{-0.040} | | | | | | | | | | | | CSB-10
16060 | | CSB-10
16080 | CSB-10
160100 | CSB-10
160115 | | 180 _{-0.040} | 185 ^{+0.046} | 185 ^{+0.210} _{+0.130} | 180.070
180.216 | | | | | | | | | | | CSB-10
18080 | CSB-10
180100 | | | 190 _{-0.046} | | | | 2.415 | 1.8 | 0.6 | | | | | | | | CSB-10
19080 | CSB-10
190100 | | | 200 _{-0.046} | | | | 2.465 | 1.0 | 0.0 | | | | | | CSB-10
20060 | | CSB-10
20080 | CSB-10
200100 | | | 220 _{-0.046} | | | | | | | | | | | | | | CSB-10
22080 | CSB-10
220100 | | | 250 _{-0.046} | | | | | | | | | | | | | | CSB-10
25080 | CSB-10
250100 | | | 260 _{-0.052} | | | | 2.415 | 1.8 | 0.6 | | | | | | | | CSB-10
26080 | CSB-10
260100 | | | 280 _{-0.052} | | | | 2.465 | 1.0 | 0.0 | | | | | | | | CSB-10
28080 | CSB-10
280100 | | | 300 _{-0.052} | 305 ^{+0.052} | 305 ^{+0.260} _{+0.170} | 300.070
300.222 | | | | | | | | | | | CSB-10
30080 | CSB-10
300100 | | # CSB-10 Metric flange bushes | | Housing | OD | ID after | D | Wall | £ | | | | Dimens | | nicmm | |--|----------------------|--|------------------|--------------|-----------|----------------|----------------|----|----------------|---------------------|--------
---------------------| | Axle | H7 | tolerance | fixed | Designation | thickness | f ₁ | f ₂ | d₁ | d ₂ | d ₃ ±0.5 | L±0.25 | ℓ ₁ -0.2 | | -0.013 | 8 +0.015 | +0.055 | 5.990 | CSB-10F06040 | | | | _ | _ | 40 | 4 | | | 6 -0.028 | 8 | 6 +0.025 | 6.005 | CSB-10F06070 | | | | 6 | 8 | 12 | 7 | | | 8 -0.013 | 10 +0.015 | 8 +0.055 | 7.990 | CSB-10F08055 | | | | 8 | 10 | 15 | 5.5 | | | -0.028 | 10 | +0.025 | 8.055 | CSB-10F08075 | | | | 0 | 10 | 15 | 7.5 | | | 0.040 | | .0.055 | 0.000 | CSB-10F10070 | | | | | | | 7 | | | 10 ^{-0.016} _{-0.034} | 12 +0.018 | 10 +0.055 +0.025 | 9.990
10.058 | CSB-10F10090 | | | | 10 | 12 | 18 | 9 | | | | | | 10.000 | CSB-10F10120 | | | | | | | 12 | | | 0.040 | | .0.005 | 44.000 | CSB-10F12070 | | | | | | | 7 | | | 12 ^{-0.016} | 14 +0.018 | 12 +0.065 +0.030 | 11.990
12.058 | CSB-10F12090 | | | | 12 | 14 | 20 | 9 | | | | | | 12.000 | CSB-10F12120 | +0.005 | 0.6 | 0.3 | | | | 12 | 1 | | 14 ^{-0.016} _{-0.034} | 16 ^{+0.018} | 14 ^{+0.065} _{+0.030} | 13.990 | CSB-10F14120 | -0.020 | 0.0 | 0.5 | 14 | 16 | 22 | 12 | ' | | -0.034 | 10 | +0.030 | 14.058 | CSB-10F14170 | | | | 14 | 10 | 22 | 17 | | | | | | | CSB-10F15090 | | | | | | | 9 | | | 15 ^{-0.016} _{-0.034} | 17 ^{+0.018} | 15 ^{+0.065} _{+0.030} | 14.990
15.058 | CSB-10F15120 | | | | 15 | 17 | 23 | 12 | | | -0.054 | | 10.030 | 15.056 | CSB-10F15170 | | | | | | | 17 | | | 16 ^{-0.016} | 18 ^{+0.018} | 16 ^{+0.065} _{+0.030} | 15.990 | CSB-10F16120 | | | | 16 | 18 | 24 | 12 | | | -0.034 | 10 | +0.030 | 16.058 | CSB-10F16170 | | | | 10 | 10 | 24 | 17 | | | | | | | CSB-10F18120 | | | | | | | 12 | | | 18 ^{-0.016} | 20 +0.021 | 18 ^{+0.065} _{+0.030} | 17.990 | CSB-10F18170 | | | | 18 | 20 | 26 | 17 | | | 0.004 | | 70.000 | 18.061 | CSB-10F18200 | | | | | | | 20 | | | | | | | CSB-10F20115 | | | | | | | 11.5 | | | 20 ^{-0.020} _{-0.041} | 23 +0.021 | 20 +0.075 +0.035 | 19.990 | CSB-10F20165 | | | | 20 | 23 | 30 | 16.5 | | | -0.041 | | 10.033 | 20.071 | CSB-10F20215 | | | | | | | 21.5 | | | 22 -0.020 | 25 ^{+0.021} | 22 ^{+0.075} _{+0.035} | 21.990 | CSB-10F22150 | +0.005 | 0.6 | 0.4 | 22 | 25 | 32 | 15 | 1.5 | | -0.041 | 25 | +0.035 | 22.071 | CSB-10F22200 | -0.025 | 0.6 | 0.4 | | 25 | 32 | 20 | 1.5 | | 0.000 | | .0.075 | 04.000 | CSB-10F25115 | | | | | | | 11.5 | | | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 25 ^{+0.075} _{+0.035} | 24.990
25.071 | CSB-10F25165 | | | | 25 | 28 | 35 | 16.5 | | | | | | 20.071 | CSB-10F25215 | | | | | | | 21.5 | | | 30 -0.025 | 34 +0.025 | 30 ^{+0.075} _{+0.035} | 29.990 | CSB-10F30160 | | | | 30 | 34 | 40 | 16 | | | 30 _{-0.050} | 34 | 30 +0.035 | 30.085 | CSB-10F30260 | | | | 30 | 34 | 42 | 26 | | | 35 ^{-0.025} _{-0.050} | 39 ^{+0.025} | 35 ^{+0.085} _{+0.045} | 34.990 | CSB-10F35160 | +0.005 | 1.2 | 0.4 | 25 | 20 | 47 | 16 | 2 | | 35 _{-0.050} | 39 | 35 _{+0.045} | 35.085 | CSB-10F35260 | -0.030 | 1.2 | 0.4 | 35 | 39 | 47 | 26 | 2 | | 40 -0.025 | 44 +0.025 | 40 +0.085 | 39.990 | CSB-10F40260 | | | | 40 | 11 | E2 | 26 | | | 40 -0.025 | 44 | 40 +0.085 +0.045 | 40.085 | CSB-10F40400 | | | | 40 | 44 | 53 | 40 | | # **CSB-10** Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | | | | | | | | | Officialiti | |------|-------------|---------|-----------|-----------|----------|-------------------|---------|-------------| | Axle | Designation | | Washer of | dimension | | Installati | on size | D +0 12 | | Axie | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t±0.2 | D₁+0.12 | | 8 | CSB-10WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-10WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-10WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-10WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-10WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-10WC20 | 20 | 36 | | 28 | | 1 | 36 | | 20 | CSB-10WC22 | 22 | 38 | 1.5 | 30 | 3 | I | 38 | | 22 | CSB-10WC24 | 24 | 42 | | 33 | 3 | | 42 | | 24 | CSB-10WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-10WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-10WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-10WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-10WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-10WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-10WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-10WC62 | 62 | 90 | | 76 | | | 90 | ### Metric standard strip | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-10SP | 500 | 150 | 1.0 | | CSB-10SP | 500 | 150 | 1.5 | | CSB-10SP | 500 | 150 | 2.0 | | CSB-10SP | 500 | 150 | 2.5 | # CSB-10 Inch cylindrical bushes Unit: inch" | Recom | mended | Installed | | | | | | | | |------------------|------------------|------------------|--------------------|-------------------|------------------|------------------|------------------|------------------|--| | Shaft
Dia | Housing bore | bearing
d | | | | Length±0.0 | 10 | | | | 0.1243
0.1236 | 0.1878
0.1873 | 0.1268
0.1243 | CSB-10
02IB02 | CSB-10
02IB03 | | | | | | | 0.1554
0.1547 | 0.2191
0.2186 | 0.1581
0.1556 | CSB-10
025IB025 | CSB-10
025IB04 | | | | | | | 0.1865
0.1858 | 0.2503
0.2497 | 0.1893
0.1867 | CSB-10
03IB03 | CSB-10
03IB04 | CSB-10
03IB06 | | | | | | 0.2490
0.2481 | 0.3128
0.3122 | 0.2518
0.2492 | CSB-10
04IB04 | CSB-10
04IB06 | | | | | | | 0.3115
0.3106 | 0.3753
0.3747 | 0.3143
0.3117 | CSB-10
05IB06 | CSB-10
05IB08 | | | | | | | 0.3740
0.3731 | 0.4691
0.4684 | 0.3769
0.3742 | CSB-10
06IB03 | CSB-10
06IB04 | CSB-10
06IB06 | CSB-10
06IB08 | CSB-10
06IB10 | CSB-10
06IB12 | | | 0.4365
0.4355 | 0.5316
0.5309 | 0.4394
0.4367 | CSB-10
07IB08 | CSB-10
07IB12 | | | | | | | 0.4990
0.4980 | 0.5941
0.5934 | 0.5019
0.4992 | CSB-10
08IB04 | CSB-10
08IB06 | CSB-10
08IB08 | CSB-10
08IB10 | CSB-10
08IB12 | CSB-10
08IB14 | | | 0.5615
0.5605 | 0.6566
0.6559 | 0.5644
0.5617 | CSB-10
09IB06 | CSB-10
09IB08 | CSB-10
09IB10 | CSB-10
09IB12 | | | | | 0.6240
0.6230 | 0.7192
0.7184 | 0.6270
0.6242 | CSB-10
10IB04 | CSB-10
10IB08 | CSB-10
10IB10 | CSB-10
10IB12 | CSB-10
10IB14 | CSB-10
10IB16 | | | 0.6865
0.6855 | 0.7817
0.7809 | 0.6895
0.6867 | CSB-10
11IB14 | | | | | | | | 0.7491
0.7479 | 0.8755
0.8747 | 0.7525
0.7493 | CSB-10
12IB04 | CSB-10
12IB06 | CSB-10
12IB08 | CSB-10
12IB10 | CSB-10
12IB12 | CSB-10
12IB16 | | | 0.8116
0.8104 | 0.9380
0.9372 | 0.8150
0.8118 | CSB-10
13IB12 | CSB-10
13IB18 | | | | | | | 0.8741
0.8729 | 1.0005
0.9997 | 0.8775
0.8743 | CSB-10
14IB04 | CSB-10
14IB06 | CSB-10
14IB12 | CSB-10
14IB16 | CSB-10
14IB20 | | | | 0.9991
0.9979 | 1.1255
1.1247 | 1.0025
0.9993 | CSB-10
16IB06 | CSB-10
16IB08 | CSB-10
16IB12 | CSB-10
16IB16 | CSB-10
16IB20 | CSB-10
16IB24 | | | 1.1238
1.1226 | 1.2818
1.2808 | 1.1278
1.1240 | CSB-10
18IB06 | CSB-10
18IB10 | CSB-10
18IB12 | CSB-10
18IB16 | | | | | 1.2488
1.2472 | 1.4068
1.4058 | 1.2528
1.2490 | CSB-10
20IB06 | CSB-10
20IB12 | CSB-10
20IB14 | CSB-10
20IB16 | CSB-10
20IB20 | CSB-10
20IB28 | | | 1.3738
1.3722 | 1.5318
1.5308 | 1.3778
1.3740 | CSB-10
22IB12 | CSB-10
22IB12 | CSB-10
22IB24 | CSB-10
22IB28 | | | | | 1.4988
1.4972 | 1.6568
1.6558 | 1.5028
1.4990 | CSB-10
24IB08 | CSB-10
24IB16 | CSB-10
24IB18 | CSB-10
24IB20 | CSB-10
24IB24 | CSB-10
24IB32 | | | 1.6238
1.6222 | 1.7818
1.7808 | 1.6278
1.6240 | CSB-10
26IB16 | CSB-10
26IB24 | | | | | | | 1.7487
1.7471 | 1.9381
1.9371 | 1.7535
1.7489 | CSB-10
28IB16 | CSB-10
28IB24 | CSB-10
28IB32 | | | | | | 1.8737
1.8721 | 2.0633
2.0621 | 1.8787
1.8739 | CSB-10
30IB12 | CSB-10
30IB16 | CSB-10
30IB36 | | | | | | 1.9987
1.9969 | 2.1883
2.1871 | 2.0037
1.9989 | CSB-10
32IB08 | CSB-10
32IB16 | CSB-10
32IB24 | CSB-10
32IB28 | CSB-10
32IB32 | CSB-10
32IB40 | | # CSB-10 Inch cylindrical bushes Unit: inch" | | | | | | | | | | | | UI | nit: inch" | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------|------------| | Recom | mended | Installed | | | | | | 1.0.040 | | | | | | Shaft
Dia | Housing bore | bearing
d | | | | | Length | ±0.010 | | | | | | 2.1257
2.1239 | 2.3130
2.3118 | 2.1326
2.1262 | CSB-10
34IB48 | | | | | | | | | | | 2.2507
2.2489 | 2.4377
2.4365 | 2.2573
2.2509 | CSB-10
36IB28 | CSB-10
36IB32 | CSB-10
36IB40 | CSB-10
36IB48 | CSB-10
36IB56 | CSB-10
36IB60 | CSB-10
36IB64 | CSB-10
36IB72 | | | | 2.5011 | 2.6881 | 2.5077 | CSB-10 | 2.4993 | 2.6869 | 2.5013 | 40IB16 | 40IB26 | 40IB32 | 40IB40 | 40IB48 | 40IB56 | 40IB60 | 40IB64 | 40IB72 | 40IB76 | | 2.7500 | 2.9370 | 2.7566 | CSB-10 | 2.7482 | 2.9358 | 2.7502 | 44IB32 | 44IB36 | 44IB40 | 44IB48 | 44IB56 | 44IB60 | 44IB64 | 44IB72 | 44IB76 | 44IB80 | | 2.8752 | 3.0623 | 2.8819 | CSB-10 | 2.8734 | 3.0610 | 2.8754 | 46IB32 | 46IB36 | 46IB40 | 46IB48 | 46IB56 | 46IB60 | 46IB64 | 46IB72 | 46IB76 | 46IB80 | | 3.0000 | 3.1872 | 3.0068 | CSB-10 | 2.9982 | 3.1858 | 3.0002 | 48IB32 | 48IB36 | 48IB40 | 48IB48 | 48IB56 | 48IB60 | 48IB64 | 48IB72 | 48IB76 | 48IB80 | | 3.2500 | 3.4372 | 3.2568 | CSB-10 | 3.2480 | 3.4358 | 3.2502 | 52IB32 | 52IB36 | 52IB40 | 52IB48 | 52IB56 | 52IB60 | 52IB64 | 52IB72 | 52IB76 | 52IB80 | | 3.5000 | 3.6872 | 3.5068 | CSB-10 | 3.4978 | 3.6858 | 3.5002 | 56IB32 | 56IB36 | 56IB40 | 56IB48 | 56IB56 | 56IB60 | 56IB64 | 56IB72 | 56IB76 | 56IB80 | | 3.6250 | 3.8122 | 3.6318 | CSB-10 | 3.6228 | 3.8108 | 3.6252 | 58IB32 | 58IB36 | 58IB40 | 58IB48 | 58IB56 | 58IB60 | 58IB64 | 58IB72 | 58IB76 | 58IB80 | | 3.7500 | 3.9372 | 3.7568 | CSB-10 | 3.7478 | 3.9358 | 3.7502 | 60IB32 | 60IB36 | 60IB40 | 60IB48 | 60IB56
 60IB60 | 60IB64 | 60IB72 | 60IB76 | 60IB80 | | 4.0000 | 4.1872 | 4.0068 | CSB-10 | 3.9978 | 4.1858 | 4.0002 | 64IB32 | 64IB36 | 64IB40 | 64IB48 | 64IB56 | 64IB60 | 64IB64 | 64IB72 | 64IB76 | 64IB80 | | 4.2500 | 4.4372 | 4.2568 | CSB-10 | 4.2478 | 4.4358 | 4.2502 | 68IB32 | 68IB36 | 68IB40 | 68IB48 | 68IB56 | 68IB60 | 68IB64 | 68IB72 | 68IB76 | 68IB80 | | 4.3750 | 4.5622 | 4.3818 | CSB-10 | 4.3728 | 4.5608 | 4.3752 | 70IB32 | 70IB36 | 70IB40 | 70IB48 | 70IB56 | 70IB60 | 70IB64 | 70IB72 | 70IB76 | 70IB80 | | 4.5000 | 4.6872 | 4.5068 | CSB-10 | 4.4978 | 4.6858 | 4.5002 | 72IB32 | 72IB36 | 72IB40 | 72IB48 | 72IB56 | 72IB60 | 72IB64 | 72IB72 | 72IB76 | 72IB80 | | 4.7500 | 4.9374 | 4.7572 | CSB-10 | 4.7475 | 4.9358 | 4.7502 | 76IB32 | 76IB36 | 76IB40 | 76IB48 | 76IB56 | 76IB60 | 76IB64 | 76IB72 | 76IB76 | 76IB80 | | 4.9986 | 5.1860 | 5.0056 | CSB-10 | 4.9961 | 5.1844 | 4.9988 | 80IB32 | 80IB36 | 80IB40 | 80IB48 | 80IB56 | 80IB60 | 80IB64 | 80IB72 | 80IB76 | 80IB80 | | 5.2500 | 5.4374 | 5.2570 | CSB-10 | 5.2475 | 5.4358 | 5.2502 | 84IB32 | 84IB36 | 84IB40 | 84IB48 | 84IB56 | 84IB60 | 84IB64 | 84IB72 | 84IB76 | 84IB80 | | 5.5000 | 5.6874 | 5.5070 | CSB-10 | 5.4975 | 5.6858 | 5.5002 | 88IB32 | 88IB36 | 88IB40 | 88IB48 | 88IB56 | 88IB60 | 88IB64 | 88IB72 | 88IB76 | 88IB80 | | 5.7500 | 5.9374 | 5.7570 | CSB-10 | 5.7475 | 5.9358 | 5.7502 | 92IB32 | 92IB36 | 92IB40 | 92IB48 | 92IB56 | 92IB60 | 92IB64 | 92IB72 | 92IB76 | 92IB80 | | 6.0000 | 6.1874 | 6.0070 | CSB-10 | 5.9975 | 6.1858 | 6.0002 | 96IB32 | 96IB36 | 96IB40 | 96IB48 | 96IB56 | 96IB60 | 96IB64 | 96IB72 | 96IB76 | 96IB80 | | 6.2500 | 6.4374 | 6.2570 | CSB-10 | 6.2475 | 6.4358 | 6.2502 | 100IB32 | 100IB36 | 100IB40 | 100IB48 | 100IB56 | 100IB60 | 100IB64 | 100IB72 | 100IB76 | 100IB80 | | 6.5000 | 6.6874 | 6.5070 | CSB-10 | 6.4975 | 6.6858 | 6.5002 | 104IB32 | 104IB36 | 104IB40 | 104IB48 | 104IB56 | 104IB60 | 104IB64 | 104IB72 | 104IB76 | 104IB80 | | 6.7500 | 6.9374 | 6.7570 | CSB-10 | 6.7475 | 6.9358 | 6.7502 | 108IB32 | 108IB36 | 108IB40 | 108IB48 | 108IB56 | 108IB60 | 108IB64 | 108IB72 | 108IB76 | 108IB80 | | 6.9954 | 7.1830 | 7.0026 | CSB-10 | 6.9929 | 7.1812 | 6.9956 | 112IB32 | 112IB36 | 112IB40 | 112IB48 | 112IB56 | 112IB60 | 112IB64 | 112IB72 | 112IB76 | 112IB80 | # CSB-10 Inch flange bushes Unit: inch" | Shaft
Dia | Housing
Bore | Installed
Bearing d₁ | Nominal
Flange d₃ | Flange
Thickness $\ell_{\scriptscriptstyle 1}$ | | Length | ±0.010 | | |------------------|------------------|-------------------------|----------------------|---|-------------------|-------------------|-------------------|---------| | 0.3750 | 0.4691 | 0.3779 | 11/16 | 0.052 | CSB-10 | CSB-10 | CSB-10 | CSB-10 | | 0.3740 | 0.4684 | 0.3752 | | 0.044 | 06FIB04 | 06FIB06 | 06FIB08 | 06FIB12 | | 0.5000 | 0.5941 | 0.5029 | 13/16 | 0.052 | CSB-10 | CSB-10 | CSB-10 | CSB-10 | | 0.4990 | 0.5934 | 0.5002 | | 0.044 | 08FIB04 | 08FIB06 | 08FIB08 | 08FIB12 | | 0.6250 | 0.7192 | 0.6280 | 15/16 | 0.052 | CSB-10 | CSB-10 | CSB-10 | CSB-10 | | 0.6240 | 0.7184 | 0.6252 | | 0.044 | 10FIB06 | 10FIB08 | 10FIB10 | 10FIB12 | | 0.7500 | 0.8755 | 0.7534 | 1-1/8 | 0.068 | CSB-10 | CSB-10 | CSB-10 | CSB-10 | | 0.7488 | 0.8747 | 0.7502 | | 0.060 | 12FIB06 | 12FIB08 | 12FIB12 | 12FIB16 | | 0.8750 | 1.0005 | 0.8784 | 1-1/5 | 0.068 | CSB-10 | CSB-10 | CSB-10 | CSB-10 | | 0.8738 | 0.9997 | 0.8752 | | 0.060 | 14FIB08 | 14FIB12 | 14FIB16 | 14FIB20 | | 1.0000 | 1.1255 | 1.0034 | 1-3/8 | 0.068 | CSB-10 | CSB-10 | CSB-10 | CSB-10 | | 0.9988 | 1.1247 | 1.0002 | | 0.060 | 16FIB08 | 16FIB12 | 16FIB16 | 16FIB20 | | 1.2500
1.2484 | 1.4068
1.4058 | 1.2540
1.2502 | 1-3/4 | 0.083
0.075 | CSB-10
20FIB16 | CSB-10
20FIB20 | CSB-10
20FIB24 | | | 1.5000
1.4984 | 1.6568
1.6558 | 1.5040
1.5002 | 2 | 0.083
0.075 | CSB-10
24FIB16 | CSB-10
24FIB24 | CSB-10
24FIB32 | | | 1.7500
1.7484 | 1.9381
1.9371 | 1.7548
1.7502 | 2-3/8 | 0.098
0.090 | CSB-10
28FIB16 | CSB-10
28FIB24 | CSB-10
28FIB32 | | # CSB-10 Inch thrust washer Unit: inch" | | | Washer | dimension | | I | nstallation siz | ze | |--------------|------------------------|---------------------|-----------|---------|----------|-----------------|-----------------------| | Designation | Inner side
d +0.010 | Outside
D -0.010 | Т | M -0.01 | h +0.010 | t±0.010 | D ₁ +0.010 | | CSB-10WC06IB | 0.500 | 0.875 | | 0.692 | 0.067 | | 0.875 | | CSB-10WC07IB | 0.562 | 1.000 | | 0.786 | 0.067 | | 1.000 | | CSB-10WC08IB | 0.625 | 1.125 | | 0.880 | | | 1.125 | | CSB-10WC09IB | 0.687 | 1.187 | | 0.942 | 0.000 | | 1.187 | | CSB-10WC10IB | 0.750 | 1.250 | | 1.005 | 0.099 | | 1.250 | | CSB-10WC11IB | 0.812 | 1.375 | | 1.099 | | 0.04 | 1.375 | | CSB-10WC12IB | 0.875 | 1.500 | 0.0630 | 1.192 | | 0.04 | 1.500 | | CSB-10WC13IB | 0.937 | 1.625 | | 1.286 | 0.130 | | 1.625 | | CSB-10WC14IB | 1.000 | 1.750 | 0.0610 | 1.380 | | | 1.750 | | CSB-10WC16IB | 1.125 | 2.000 | | 1.567 | | | 2.000 | | CSB-10WC18IB | 1.250 | 2.125 | | 1.692 | 0.161 | | 2.125 | | CSB-10WC20IB | 1.375 | 2.250 | | 1.817 | | | 2.250 | | CSB-10WC22IB | 1.500 | 2.500 | | 2.005 | | | 2.500 | | CSB-10WC24IB | 1.625 | 2.625 | | 2.130 | | | 2.625 | | CSB-10WC26IB | 1.750 | 2.750 | | 2.255 | | | 2.750 | | CSB-10WC28IB | 2.000 | 3.000 | 0.0930 | 2.505 | 0.192 | 0.07 | 3.000 | | CSB-10WC30IB | 2.125 | 3.125 | | 2.630 | | | 3.125 | | CSB-10WC32IB | 2.250 | 3.250 | 0.0910 | 2.755 | | | 3.250 | ## **CSB-50** Metric cylindrical bushes | Axle | Housing | OD | ID after | Wall
thick- | f ₁ | f ₂ | | | | | L _{-0.40} | | 30 L -0.3
30 L -0.4 | | | | | |--|-----------|---|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|----------------|------------------------|----------------|----------------|----------------|----| | Axic | H7 | tolerance | fixed | ness | '1 | '2 | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | 6 -0.013
-0.028 | 8 +0.015 | 8 ^{+0.055}
+0.025 | 5.990
6.055 | | | | CSB-50
0606 | CSB-50
0608 | CSB-50
0610 | | | | | | | | | | 8 ^{-0.013}
-0.028 | 10 +0.015 | 10 +0.055 +0.025 | 7.990
8.055 | | | | CSB-50
0806 | CSB-50
0808 | CSB-50
0810 | CSB-50
0812 | CSB-50
0815 | | | | | | | | 10 ^{-0.016} _{-0.034} | 12 +0.018 | 12 ^{+0.065} _{+0.030} | 9.990
10.058 | | | | CSB-50
1006 | CSB-50
1008 | CSB-50
1010 | CSB-50
1012 | CSB-50
1015 | CSB-50
1020 | | | | | | | 12 ^{-0.016} _{-0.034} | 14 +0.018 | 14 ^{+0.065} _{+0.030} | 11.990
12.058 | | | | CSB-50
1206 | CSB-50
1208 | CSB-50
1210 | CSB-50
1212 | CSB-50
1215 | CSB-50
1220 | CSB-50
1225 | | | | | | 13 ^{-0.016} _{-0.034} | 15 +0.018 | 15 ^{+.0.065} _{+0.030} | 12.990
13.058 | 0.980 | | | | | CSB-50
1310 | | | CSB-50
1320 | | | | | | | 14 ^{-0.016} _{-0.034} | 16 +0.018 | 16 ^{+0.065} _{+0.030} | 13.990
14.058 | 1.005 | 0.6 | 0.3 | | | CSB-50
1410 | CSB-50
1412 | CSB-50
1415 | CSB-50
1420 | CSB-50
1425 | | | | | | 15 ^{-0.016} _{-0.034} | 17 +0.018 | 17 ^{+0.065} _{+0.030} | 14.990
15.058 | | | | | | CSB-50
1510 | CSB-50
1512 | CSB-50
1515 | CSB-50
1520 | CSB-50
1525 | | | | | | 16 ^{-0.016} _{-0.034} | 18 +0.018 | 18 ^{+0.065} _{+0.030} | 15.990
16.058 | | | | | | CSB-50
1610 | CSB-50
1612 | CSB-50
1615 | CSB-50
1620 | CSB-50
1625 | | | | | | 17 ^{-0.016} _{-0.034} | 19 +0.021 | 19 ^{+0.075} _{+0.035} | 16.990
17.061 | | | | | | CSB-50
1710 | CSB-50
1712 | | CSB-50
1720 | | | | | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 20 +0.075 +0.035 | 17.990
18.061 | | | | | | CSB-50
1810 | CSB-50
1812 | CSB-50
1815 | CSB-50
1820 | CSB-50
1825 | | | | | | 20 -0.020 -0.041 | 23 +0.021 | 23 ^{-0.075} _{+0.035} | 19.990
20.071 | | | | | | CSB-50
2010 | CSB-50
2012 | CSB-50
2015 | CSB-50
2020 | CSB-50
2025 | CSB-50
2030 | | | | | 22 ^{-0.020} _{-0.041} | 25 +0.021 | 25 ^{+0.075} _{+0.035} | 21.990
22.071 | 1.475 | 0.0 | 0.4 | | | CSB-50
2210 | CSB-50
2212 | CSB-50
2215 | CSB-50
2220 | CSB-50
2225 | CSB-50
2230 | | | | | 24 ^{-0.020} _{-0.041} | 27 +0.021 | 27 ^{+0.075} _{+0.035} | 23.990
24.071 | 1.505 | 0.6 | 0.4 | | | | | CSB-50
2415 | CSB-50
2420 | CSB-50
2425 | CSB-50
2430 | | | | | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 28 ^{+0.075} _{+0.035} | 24.990
25.071 | | | | | | CSB-50
2510 | CSB-50
2512 | CSB-50
2515 | CSB-50
2520 | CSB-50
2525 | CSB-50
2530 | CSB-50
2540 | CSB-50
2550 | | | 28 -0.020 -0.041 | 32 +0.025 | 32 ^{+0.085} _{+0.045} | 27.990
28.085 | | | | | | | | CSB-50
2815 | CSB-50
2820 | CSB-50
2825 | CSB-50
2830 | CSB-50
2840 | | | | 30 ^{-0.020} _{-0.041} | 34 +0.025 | 34 ^{+0.085} _{+0.045} | 29.990
30.285 | | | | | | | CSB-50
3012 | CSB-50
3015 | CSB-50
3020 | CSB-50
3025 | CSB-50
3030 | CSB-50
3040 | | | | 32 ^{-0.025} _{-0.050} | 36 +0.025 | 36 ^{+0.085} _{+0.045} | 31.990
32.085 | 1.970
2.005 | 1.0 | 0.4 | | | | | | CSB-50
3220 | | CSB-50
3230 | CSB-50
3240 | | | | 35 ^{-0.025} _{-0.050} | 39 +0.025 | 39 ^{+0.085} _{+0.045} | 34.990
35.085 | | 1.2 | 0.4 | | | | CSB-50
3512 | CSB-50
3515 | CSB-50
3520 | CSB-50
3525 | CSB-50
3530 | CSB-50
3540 | CSB-50
3550 | | | 38 ^{-0.025} _{-0.050} | 42 +0.025 | 42 ^{+0.085} _{+0.045} | 37.990
38.085 | | | | | | | | CSB-50
3815 | | | CSB-50
3830 | CSB-50
3840 | | | | 40 -0.025 -0.050 | 44 +0.025 | 44 ^{+0.085}
+0.045 | 39.990
40.085 | | | | | | | CSB-50
4012 | | CSB-50
4020 | CSB-50
4025 | CSB-50
4030 | CSB-50
4040 | CSB-50
4050 | | # CSB-50 Metric cylinrical bushes | م دا م | Housing | OD | ID after | Wall
thick- | £ | £ | | | | | L. | 0
0.40 | | | | |
--|-----------------------|---|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|------------------|------------------| | Axle | H7 | tolerance | fixed | ness | f ₁ | f ₂ | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | 115 | | 45 ^{-0.025} _{-0.050} | 50 +0.025 | 50 ^{+0.085} _{+0.045} | 44.990
45.105 | | | | CSB-50
4520 | CSB-50
4525 | CSB-50
4530 | CSB-50
4540 | CSB-50
4550 | | | | | | | 50 -0.025 | 55 ^{+0.030} | 10.000 | | | | | CSB-50
5020 | | CSB-50
5030 | CSB-50
5040 | CSB-50
5050 | CSB-50
5060 | | | | | | 55 ^{-0.030} _{-0.060} | 60 +0.030 | 60 ^{+0.100} _{+0.055} | 54.990
55.110 | | | | | | CSB-50
5530 | CSB-50
5540 | CSB-50
5550 | CSB-50
5560 | | | | | | 60 -0.030 | 65 | 65 ^{+0.100} _{+0.055} | | 2.460
2.505 | 1.8 | 0.6 | | | CSB-50
6030 | CSB-50
6040 | CSB-50
6050 | CSB-50
6060 | CSB-50
6070 | | | | | | 70 +0.030 | | | | | | | | CSB-50
6530 | CSB-50
6540 | CSB-50
6550 | CSB-50
6560 | CSB-50
6570 | | | | | | | 75 ^{+0.100} _{+0.055} | | | | | | | | CSB-50
7040 | CSB-50
7050 | CSB-50
7060 | CSB-50
7070 | CSB-50
7080 | | | | | | 80 +0.100 +0.055 | 74.990
75.110 | | | | | | CSB-50
7530 | CSB-50
7540 | CSB-50
7550 | CSB-50
7560 | CSB-50
7570 | CSB-50
7580 | | | | -0.030 | | 10.070 | | | | | | | | CSB-50
8040 | CSB-50
8050 | CSB-50
8060 | CSB-50
8070 | CSB-50
8080 | CSB-50
80100 | | | | | 90 +0.120 +0.070 | | | | | | | | CSB-50
8540 | | CSB-50
8560 | | CSB-50
8580 | CSB-50
85100 | | | | | 95 ^{+0.120} _{+0.070} | | 2.440
2.490 | | | | | | CSB-50
9040 | CSB-50
9050 | CSB-50
9060 | | CSB-50
9080 | CSB-50
90100 | | | 95 -0.035 | 100 ^{+0.035} | 100+0.120 | 95.020
95.155 | | 1.8 | 0.6 | | | | | CSB-50
9550 | CSB-50
9560 | | CSB-50
9580 | CSB-50
95100 | | | | | 105 ^{+0.120} _{+0.070} | | | | | | | | | CSB-50
10050 | CSB-50
10060 | | CSB-50
10080 | | CSB-50
100115 | | 105 _{-0.035} | 110 ^{+0.035} | 110 ^{+0.120} _{+0.070} | 105.020
105.155 | | | | | | | | | CSB-50
10560 | | CSB-50
10580 | | CSB-50
105115 | | 110 -0.035 | 115 ^{+0.035} | 115 ^{+0.120} _{+0.070} | 110.020
110.155 | | | | | | | | | CSB-50
11060 | | CSB-50
11080 | | CSB-50
110115 | | 120 _{-0.035} | 125 ^{+0.040} | 125+0.170 | 120.070
120.210 | | | | | | | | | CSB-50
12060 | | CSB-50
12080 | CSB-50
120100 | | | | | 130+0.170 | | | | | | | | | | CSB-50
12560 | | | CSB-50
125100 | CSB-50
125115 | | | | 135 ^{+0.170} _{+0.100} | | 2.415 | 1 0 | 0.6 | | | | | | CSB-50
13060 | | CSB-50
13080 | CSB-50
130100 | | | | | 145 ^{+0.170} _{+0.100} | | 2.465 | 1.0 | 0.0 | | | | | | CSB-50
14060 | | CSB-50
14080 | CSB-50
140100 | | | 150 _{-0.040} | 155 ^{+0.040} | 155 ^{+0.170} _{+0.100} | 150.070
150.210 | | | | | | | | | CSB-50
15060 | | CSB-50
15080 | CSB-50
150100 | | | | | 165 ^{+0.170} _{+0.100} | | | | | | | | | | CSB-50
16060 | | CSB-50
16080 | CSB-50
160100 | CSB-50
160115 | | | | 185 ^{+0.210} _{+0.130} | | | | | | | | | | | | CSB-50
18080 | CSB-50
180100 | | | 190 _{-0.046} | 195 ^{+0.046} | 195 ^{+0.210} _{+0.130} | 190.070
190.216 | 2.415 | 1.0 | 0.6 | | | | | | | | CSB-50
19080 | CSB-50
190100 | | | 200 _{-0.046} | 205 ^{+0.046} | 205 ^{+0.210} _{+0.130} | 200.070
200.216 | 2.465 | 1.8 | 0.6 | | | | | | CSB-50
20060 | | CSB-50
20080 | CSB-50
200100 | | | 220 _{-0.046} | 225 ^{+0.046} | 225 ^{+0.210} _{+0.130} | 220.070
220.216 | 2.415 | | | | | | | | | | CSB-50
22080 | CSB-50
220100 | | | 250 _{-0.046} | 255 ^{+0.052} | 255 ^{+0.260} _{+0.170} | 250.070
250.222 | | | | | | | | | | | CSB-50
25080 | CSB-50
250100 | | | 260 _{-0.052} | 265 ^{+0.052} | 265 ^{+0.260} _{+0.170} | 260.070
260.222 | | 1.0 | 0.0 | | | | | | | | CSB-50
26080 | CSB-50
260100 | | | | | 285 ^{+0.260} _{+0.170} | | 2.465 | 1.8 | 0.6 | | | | | | | | CSB-50
28080 | CSB-50
280100 | | | 300 _{-0.052} | 305 ^{+0.052} | 305 ^{+0.260} _{+0.170} | 300.070
300.222 | | | | | | | | | | | CSB-50
30080 | CSB-50
300100 | | ## CSB-50 Metric flange bushes | - 1 | | | ٠. | | | |-----|---|---|-----|---|---| | | ı | n | ıt٠ | m | n | | | | | | | | | Axle | Housing | OD | ID after | Designation | Wall | f ₁ | f ₂ | | | Dimens | sion | | |--|----------------------|--|------------------|--------------|-----------|----------------|----------------|----------------|----------------|---------------|--------|---------------------| | AXIC | H7 | tolerance | fixed | Designation | thickness | '1 | '2 | d ₁ | d ₂ | $d_3 \pm 0.5$ | L±0.25 | ℓ ₁ -0.2 | | 6 -0.013 | 8 +0.015 | 6 +0.055 | 5.990 | CSB-50F06040 | | | | 6 | 8 | 12 | 4 | | | -0.028 | | +0.025 | 6.005 | CSB-50F06070 | | | | 0 | 0 | 12 | 7 | | | 8 -0.013 | 10 ^{+0.015} | 8 +0.055 | 7.990 | CSB-50F08055 | | | | 8 | 10 | 15 | 5.5 | | | -0.028 | 10 | +0.025 | 8.055 | CSB-50F08075 | | | | | 10 | | 7.5 | | | 0.016 | +0.010 | +0.055 | 9.990 | CSB-50F10070 | | | | | | | 7 | | | 10 ^{-0.016} _{-0.034} | 12 ^{+0.018} | 10 +0.025 | 10.058 | CSB-50F10090 | | | | 10 | 12 | 18 | 9 | | | | | | | CSB-50F10120 | | | | | | | 12 | | | -0.016 | ±0.018 | +0.065 | 11.990 | CSB-50F12070 | | | | | | | 7 | | | 12 ^{-0.016} _{-0.034} | 14 ^{+0.018} | 12 +0.065 | 12.058 | CSB-50F12090 | | | | 12 | 14 | 20 | 9 | | | | | | | CSB-50F12120 | +0.005 | 0.6 | 0.3 | | | | 12 | 1 | | 14 ^{-0.016} _{-0.034} | 16 ^{+0.018} | 14 ^{+0.065} _{+0.030} | 13.990 | CSB-50F14120 | -0.020 | 0.0 | 0.0 | 14 | 16 | 22 | 12 | · | | -0.034 | | +0.030 | 14.058 | CSB-50F14170 | | | | | | | 17 | | | 0.016 | 10.040 | +0.065 | 14.000 | CSB-50F15090 | | | | | | | 9 | | | 15 ^{-0.016} _{-0.034} | 17 ^{+0.018} | 15 ^{+0.065} _{+0.030} | 14.990
15.058 | CSB-50F15120 | | | | 15 | 17 | 23 | 12 | | | | | | | CSB-50F15170 | | | | | | | 17 | | | 16 ^{-0.016} _{-0.034} | 18 ^{+0.018} | 16 ^{+0.065} _{+0.030} | 15.990 | CSB-50F16120 | | | | 16 | 18 | 24 | 12 | | | -0.034 | | +0.030 | 16.058 | CSB-50F16170 | | | | | | | 17 | | | -0.016 | +0.021 | +0.065 | 17.990 | CSB-50F18120 | | | | | | | 12 | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 18 +0.065 | 18.061 | CSB-50F18170 | | | | 18 | 20 | 26 | 17 | | | | | | | CSB-50F18200 | | | | | | | 20 | | | -0.020 | +0.021 | +0.075 | 19.990 | CSB-50F20115 | | | | | | | 11.5 | | | 20 -0.020 | 23 ^{+0.021} | 20 +0.075 +0.035 | 20.071 | CSB-50F20165 | | | | 20 | 23 | 30 | 16.5 | | | | | | | CSB-50F20215 | | | | | | | 21.5 | | | 22 -0.020 | 25 ^{+0.021} | 22 +0.075 +0.035 | 21.990 | CSB-50F22150 | +0.005 | 0.6 | 0.4 | 22 | 25 | 32 | 15 | 1.5 | | -0.041 | | +0.035 | 22.071 | CSB-50F22200 | -0.025 | | | | | | 20 | | | -0.020 | 28 ^{+0.021} | +0.075 | 24.990 | CSB-50F25115 | | | | 0.5 | | 0.5 | 11.5 | | | 25 ^{-0.020} _{-0.041} | 28 | 25 ^{+0.075} _{+0.035} | 25.071 | CSB-50F25165 | | | | 25 | 28 | 35 | 16.5 | | | | | | | CSB-50F25215 | | | | | | | 21.5 | | | 30 -0.025 | 34 +0.025 | 30 ^{+0.075} _{+0.035} | 29.990 | CSB-50F30160 | | | | 30 | 34 | 42 | 16 | | | | | | 30.085 | CSB-50F30260 | | | | | | | 26 | | | 35 ^{-0.025} _{-0.050} | 39 ^{+0.025} | 35 ^{+0.085} _{+0.045} | 34.990 | CSB-50F35160 | +0.005 | 1.2 | 0.4 | 35 | 39 | 47 | 16 | 2 | | | | | 35.085 | CSB-50F35260 | -0.030 | | | | | | 26 | | | 40 -0.025 | 44 +0.025 | 40 +0.085 +0.045 | 39.990 | CSB-50F40260 | | | | 40 | 44 | 53 | 26 | | | -0.050 | | +0.045 | 40.085 | CSB-50F40400 | | | | | | | 40 | | ## CSB-50 Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | Axle | Designation | | Washer o | dimension | | Installati | on size | D 10.12 | |------|-------------|---------|----------|-----------|----------|-------------------|---------|---------| | Axie | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t±0.2 | D₁+0.12 | | 8 | CSB-50WC10 | 10 20 | | | 15 | 1.5 | | 20 | | 10 | CSB-50WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-50WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-50WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-50WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-50WC20 | 20 | 36 | | 28 | | 1 | 36 | | 20 | CSB-50WC22 | 22 | 38 | 1.5 | 30 | 3 | ! | 38 | | 22 | CSB-50WC24 | 24 | 42 | 12 | | 3 | | 42 | | 24 | CSB-50WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-50WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-50WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-50WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-50WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-50WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-50WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-50WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** Unit:mm | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-50SP | 500 | 150 | 1.0 | | CSB-50SP | 500 | 150 | 1.5 | | CSB-50SP | 500 | 150 | 2.0 | | CSB-50SP | 500 | 150 | 2.5 | # CSB-LA10 Metric cylindrical bushes | | | | | | | | | | | | | | | | | nit:mm | |--|-----------------------|---|--------------------|----------------|----------------|-----------------------|------------------|-------------------------|------------------|------------------|-------------------|-------------------------|-------------------------|-------------------------|--------------------|--------------------| | | Housing | OD | ID after | Wall thick- | r | £ | | | | | L -0 | .40 | | | | | | Axle | H7 | tolerance | fixed | ness | f ₁ | f ₂ | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | 115 | | 45 ^{-0.025} _{-0.050} | 50 +0.025 | 50 ^{+0.085} _{+0.045} | 44.990
45.105 | | | | CSB-LA10
4520 | CSB-LA10
4525 |
CSB-LA10
4530 | CSB-LA10
4540 | CSB-LA10
4550 | | | | | | | 50 ^{-0.025} _{-0.050} | 55 | | 49.990
50.110 | | | | CSB-LA10
5020 | | CSB-LA10
5030 | CSB-LA10
5040 | CSB-LA10
5050 | CSB-LA10
5060 | | | | | | 55 ^{-0.030} _{-0.060} | 60 +0.030 | | 54.990
55.110 | | | | | | CSB-LA10
5530 | CSB-LA10
5540 | CSB-LA10
5550 | CSB-LA10
5560 | | | | | | 60 ^{-0.030} _{-0.060} | 65 +0.030 | 65 ^{+0.100} _{+0.055} | 59.990
60.110 | 2.460
2.505 | | 0.6 | | | CSB-LA10
6030 | CSB-LA10
6040 | CSB-LA10
6050 | CSB-LA10
6060 | CSB-LA10
6070 | | | | | 65 ^{-0.030} _{-0.060} | 70 +0.030 | | | | | | | | CSB-LA10
6530 | CSB-LA10
6540 | CSB-LA10
6550 | CSB-LA10
6560 | CSB-LA10
6570 | | | | | | | 75 ^{+0.100} _{+0.055} | 69.990
70.110 | | | | | | | CSB-LA10
7040 | CSB-LA10
7050 | CSB-LA10
7060 | CSB-LA10
7070 | CSB-LA10
7080 | | | | 75 ^{-0.030} _{-0.060} | 80 +0.030 | | 74.990
75.110 | | | | | | CSB-LA10
7530 | CSB-LA10
7540 | CSB-LA10
7550 | CSB-LA10
7560 | CSB-LA10
7570 | CSB-LA10
7580 | | | | 80 -0.030 | +0.035 | 85 ^{+0.120} _{+0.070} | 80.020
80.155 | | | | | | | CSB-LA10
8040 | CSB-LA10
8050 | CSB-LA10
8060 | CSB-LA10
8070 | CSB-LA10
8080 | CSB-LA10
80100 | | | 85 -0.035 | 90 +0.035 | 90 +0.120 +0.070 | 85.020
85.155 | | | | | | | CSB-LA10
8540 | | CSB-LA10
8560 | | CSB-LA10
8580 | CSB-LA10
85100 | | | 90 -0.035 | 95 +0.035 | 95 ^{+0.120} _{+0.070} | 90.020
90.155 | | | | | | | CSB-LA10
9040 | CSB-LA10
9050 | CSB-LA10
9060 | | CSB-LA10
9080 | CSB-LA10
90100 | | | 95 -0.035 | 100+0.035 | 100+0.120 | 95.020
95.155 | 2.440
2.490 | 1.8 | 0.6 | | | | | CSB-LA10
9550 | CSB-LA10
9560 | | CSB-LA10
9580 | CSB-LA10
95100 | | | 100 _{-0.035} | 105 ^{+0.035} | 105+0.120 | 100.020
100.155 | | | | | | | | CSB-LA10
10050 | CSB-LA10
10060 | | CSB-LA10
10080 | | CSB-LA10
100115 | | | | 110 ^{+0.120} _{+0.070} | | | | | | | | | | CSB-LA10
10560 | | CSB-LA10
10580 | | CSB-LA10
105115 | | 110 -0.035 | 115 ^{+0.035} | 115 ^{+0.120} _{+0.070} | 110.020
110.155 | | | | | | | | | CSB-LA10
11060 | | CSB-LA10
11080 | | CSB-LA10
110115 | | 120 _{-0.035} | 125 ^{+0.040} | 125+0.170 | 120.070
120.210 | | | | | | | | | CSB-LA10
12060 | | CSB-LA10
12080 | CSB-LA10
120100 | | | 125 _{-0.040} | 130 ^{+0.040} | 130+0.170 | 125.070
125.210 | | | | | | | | | CSB-LA10
12560 | | | CSB-LA10
125100 | CSB-LA10
125115 | | | | 135+0.170 | | 2.415 | 4.0 | 0.0 | | | | | | CSB-LA10
13060 | | CSB-LA10
13080 | CSB-LA10
130100 | | | | | 145+0.170 | | 2.465 | 1.8 | 0.6 | | | | | | CSB-LA10
14060 | | CSB-LA10
14080 | CSB-LA10
140100 | | | 150 _{-0.040} | 155 ^{+0.040} | 155 ^{+0.170} _{+0.100} | 150.070
150.210 | | | | | | | | | CSB-LA10
15060 | | CSB-LA10
15080 | CSB-LA10
150100 | | | | | 165 ^{+0.170} _{+0.100} | | | | | | | | | | CSB-LA10
16060 | | CSB-LA10
16080 | CSB-LA10
160100 | CSB-LA10
160115 | | 180 _{-0.040} | 185 ^{+0.046} | 185 ^{+0.210} _{+0.130} | 180.070
180.216 | | | | | | | | | | | CSB-LA10
18080 | CSB-LA10
180100 | | | | | 195 ^{+0.210} _{+0.130} | | 2.415 | 4.0 | 0.0 | | | | | | | | CSB-LA10
19080 | CSB-LA10
190100 | | | 200 _{-0.046} | 205 ^{+0.046} | 205+0.210 | 200.070
200.216 | 2.465 | 1.8 | 0.6 | | | | | | CSB-LA10
20060 | | CSB-LA10
20080 | CSB-LA10
200100 | | | 220 _{-0.046} | 225 ^{+0.046} | 225 ^{+0.210} _{+0.130} | 220.070
220.216 | | | | | | | | | | | CSB-LA10
22080 | CSB-LA10
220100 | | | 250 _{-0.046} | 255 ^{+0.052} | 255 ^{+0.260} _{+0.170} | 250.070
250.222 | | | | | | | | | | | CSB-LA10
25080 | CSB-LA10
250100 | | | | | 265 ^{+0.260} _{+0.170} | | 2.415 | | 0.0 | | | | | | | | CSB-LA10
26080 | CSB-LA10
260100 | | | | | 285 ^{+0.260} _{+0.170} | | 2.465 | | 0.6 | | | | | | | | CSB-LA10
28080 | CSB-LA10
280100 | | | | | 305 ^{+0.260} _{+0.170} | | | | | | | | | | | | CSB-LA10
30080 | CSB-LA10
300100 | ## CSB-50 Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | Axle | Designation | | Washer o | dimension | | Installati | on size | D 10.12 | |------|-------------|---------|----------|-----------|----------|-------------------|---------|---------| | Axie | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t±0.2 | D₁+0.12 | | 8 | CSB-50WC10 | 10 20 | | | 15 | 1.5 | | 20 | | 10 | CSB-50WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-50WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-50WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-50WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-50WC20 | 20 | 36 | | 28 | | 1 | 36 | | 20 | CSB-50WC22 | 22 | 38 | 1.5 | 30 | 3 | ! | 38 | | 22 | CSB-50WC24 | 24 | 42 | 12 | | 3 | | 42 | | 24 | CSB-50WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-50WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-50WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-50WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-50WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-50WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-50WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-50WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** Unit:mm | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-50SP | 500 | 150 | 1.0 | | CSB-50SP | 500 | 150 | 1.5 | | CSB-50SP | 500 | 150 | 2.0 | | CSB-50SP | 500 | 150 | 2.5 | # CSB-LA10 Metric flange bushes | $\frac{35^{\circ} \pm 5^{\circ}}{20^{\circ} \pm 5^{\circ}} \min 0.3$ Detail X | |---| | Unit:mm | | imension | | Axle | Housing | OD | ID after | Designation | Wall | f ₁ | f ₂ | | | Dimens | sion | | | | |--|----------------------|--|------------------|----------------|-----------|----------------|----------------|----------|----------------|---------------|--------|----------------------------|---|--| | AXIC | H7 | tolerance | fixed | Doorgridation | thickness | "1 | ' 2 | d₁ | d ₂ | $d_3 \pm 0.5$ | L±0.25 | <i>ℓ</i> ₁ -0.2 | | | | 6 -0.013 | 8 +0.015 | 6 +0.055 | 5.990 | CSB-LA10F06040 | | | | 6 | 8 | 12 | 4 | | | | | -0.028 | | +0.025 | 6.005 | CSB-LA10F06070 | | | | | 0 | 12 | 7 | | | | | 8 -0.013 | 10 +0.015 | 8 +0.055 | 7.990 | CSB-LA10F08055 | | | | 8 | 10 | 15 | 5.5 | | | | | -0.028 | 10 | +0.025 | 8.055 | CSB-LA10F08075 | | | | | 10 | 10 | 7.5 | | | | | 0.016 | ±0.018 | +0.055 | 9.990 | CSB-LA10F10070 | | | | | | | 7 | | | | | 10 ^{-0.016} | 12 +0.018 | 10 +0.055 | 10.058 | CSB-LA10F10090 | | | | 10 | 12 | 18 | 9 | | | | | | | | | CSB-LA10F10120 | | | | | | | 12 | | | | | -0.016 | +0.018 | 8 12 +0.065 +0.030 | +0.065 | +0.065 | 11.990 | CSB-LA10F12070 | | | | | | | 7 | | | 12 ^{-0.016} _{-0.034} | 14 +0.018 | | 12.058 | CSB-LA10F12090 | | | 0.3 | 12 | 14 | 20 | 9 | | | | | | | | | CSB-LA10F12120 | +0.005 | 0.6 | | | | | 12 | 1 | | | | 14 ^{-0.016} | 16 ^{+0.018} | 14 ^{+0.065} _{+0.030} | 13.990 | CSB-LA10F14120 | -0.020 | 0.0 | 0.0 | 14 | 16 | 22 | 12 | | | | | -0.034 | | +0.030 | 14.058 | CSB-LA10F14170 | | | | | | | 17 | | | | | 0.016 | 10.010 | +0.065 | 14.000 | CSB-LA10F15090 | | | | | | | 9 | | | | | 15 ^{-0.016} _{-0.034} | 17 +0.018 | 15 +0.065
+0.030 | 14.990
15.058 | CSB-LA10F15120 | | | | 15 | 17 | 23 | 12 | | | | | | | | | CSB-LA10F15170 | | | | | | | 17 | | | | | 16 ^{-0.016} | 18 +0.018 | 16 ^{+0.065} _{+0.030} | 15.990 | CSB-LA10F16120 | | | | 16 | 18 | 24 | 12 | | | | | -0.034 | | +0.030 | 16.058 | CSB-LA10F16170 | | | | | | | 17 | | | | | -0.016 | +0.021 | +0.065 | 17.990 | CSB-LA10F18120 | | | | 18 | | | 12 | | | | | 18 ^{-0.016} | 20 +0.021 | 18 ^{+0.065} _{+0.030} | 18.061 | CSB-LA10F18170 | | | | | 20 | 26 | 17 | | | | | | | | | CSB-LA10F18200 | | | | | | | 20 | | | | | -0.020 | +0.021 | +0.075 | 19.990 | CSB-LA10F20115 | | | | | | | 11.5 | | | | | 20 ^{-0.020} _{-0.041} | 23 +0.021 | 20 +0.035 | 20.071 | CSB-LA10F20165 | | | | 20 | 23 | 30 | 16.5 | | | | | | | | | CSB-LA10F20215 | | | | | | | 21.5 | | | | | 22 ^{-0.020} _{-0.041} | 25 +0.021 | 22 +0.075 +0.035 | 21.990 | CSB-LA10F22150 | +0.005 | 0.6 | 0.4 | 22 | 25 | 32 | 15 | 1.5 | | | | -0.041 | | +0.035 | 22.071 | CSB-LA10F22200 | -0.025 | | | | | | 20 | | | | | -0.020 | 28 +0.021 | +0.075 | 24.990 | CSB-LA10F25115 | | | | 0.5 | | 0.5 | 11.5 | | | | | 25 ^{-0.020} _{-0.041} | 28 | 25 ^{+0.075} _{+0.035} | 25.071 | CSB-LA10F25165 | | | | 25 | 28 | 35 | 16.5 | | | | | | | | | CSB-LA10F25215 | | | | | | | 21.5 | | | | | 30 -0.025 | 34 +0.025 | 30 ^{+0.075} _{+0.035} | 29.990 | CSB-LA10F30160 | | | | 30 | 34 | 42 | 16 | | | | | | | | 30.085 | CSB-LA10F30260 | | | | | | | 26 | | | | | 35 ^{-0.025} _{-0.050} | 39 ^{+0.025} | 35 ^{+0.085} _{+0.045} | 34.990 | CSB-LA10F35160 | +0.005 | 1.2 | 2 0.4 | .4 35 39 | 39 | 47 | 16 | 2 | | | | | | | 35.085 | CSB-LA10F35260 | -0.030 | 1.2 0 | | | | | 26 | | | | | 40 -0.025 | 44 +0.025 | 14 ^{+0.025} 40 ^{+0.085} 39.990 CSB-LA1
40.085 CSB-LA1 | CSB-LA10F40260 | | | | 40 | 44 | 44 53 | 26 | | | | | | -0.030 | | +0.045 | 40.085 | CSB-LA10F40400 | | | | | | | 40 | | | | # CSB-LA10 Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | | | | | | | | | O m c.m. | |------|--------------|---------|----------|-----------|----------|-------------------|---------|----------| | Axle | Designation | | Washer o | dimension | | Installati | on size | D 10 10 | | Axie | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t±0.2 | D₁+0.12 | | 8 | CSB-LA10WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-LA10WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-LA10WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-LA10WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-LA10WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-LA10WC20 | 20 | 36 |
| 28 | | 1 | 36 | | 20 | CSB-LA10WC22 | 22 | 38 | 1.5 | 30 | 3 | ı | 38 | | 22 | CSB-LA10WC24 | 24 | 42 | | 33 | 3 | | 42 | | 24 | CSB-LA10WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-LA10WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-LA10WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-LA10WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-LA10WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-LA10WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-LA10WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-LA10WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** | Туре | Length±1 | Width±1 | Thickness -0.05 | |------------|----------|---------|-----------------| | CSB-LA10SP | 500 | 150 | 1.0 | | CSB-LA10SP | 500 | 150 | 1.5 | | CSB-LA10SP | 500 | 150 | 2.0 | | CSB-LA10SP | 500 | 150 | 2.5 | # **CSB-11** Metric cylindrical bushes | | | | | | | | | | | | 0 | 11-20 | 20 1 0 2 | ` | | 0 | 10.111111 |--|----------------------|---|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|----------------|------------------------|----------------|----------------|----------------|-----------|----------------|--|--|----------------|----------------|--| | Axle | Housing | | ID after | Wall
thick- | f ₁ | f ₂ | | | | | L _{-0.40} | | 30 L -0.3
30 L -0.4 | H7 | tolerance | fixed | ness | | | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 6 -0.013
-0.028 | 8 +0.015 | 8 ^{+0.075}
+0.045 | 5.990
6.055 | | | | CSB-11
0606 | CSB-11
0608 | CSB-11
0610 | 8 ^{-0.013}
-0.028 | 10 +0.015 | 10 +0.075 +0.045 | 7.990
8.055 | | | | CSB-11
0806 | CSB-11
0808 | CSB-11
0810 | CSB-11
0812 | CSB-11
0815 | 10 ^{-0.016} _{-0.034} | 12 +0.018 | 12 ^{+0.080} _{+0.050} | 9.990
10.058 | | | | CSB-11
1006 | CSB-11
1008 | CSB-11
1010 | CSB-11
1012 | CSB-11
1015 | CSB-11
1020 | 12 ^{-0.016} _{-0.034} | 14 +0.018 | 14 ^{+0.080} _{+0.050} | 11.990
12.058 | | | | CSB-11
1206 | CSB-11
1208 | CSB-11
1210 | CSB-11
1212 | CSB-11
1215 | CSB-11
1220 | CSB-11
1225 | 13 -0.016 -0.034 | 15 +0.018 | 15 ^{+.0.080} _{+0.050} | 12.990
13.058 | 0.980 | 0.0 | | | | CSB-11
1310 | | | CSB-11
1320 | 14 ^{-0.016} _{-0.034} | 16 +0.018 | 16 ^{+0.080} _{+0.050} | 13.990
14.058 | 1.005 | 0.6 | 0.3 | | | CSB-11
1410 | CSB-11
1412 | CSB-11
1415 | CSB-11
1420 | CSB-11
1425 | 15 ^{-0.016} _{-0.034} | 17 +0.018 | 17 ^{+0.080} _{+0.050} | 14.990
15.058 | | | | | | CSB-11
1510 | CSB-11
1512 | CSB-11
1515 | CSB-11
1520 | CSB-11
1525 | 16 ^{-0.016} _{-0.034} | 18 +0.018 | 18 ^{+0.080} _{+0.050} | 15.990
16.058 | | | | | | CSB-11
1610 | CSB-11
1612 | CSB-11
1615 | CSB-11
1620 | CSB-11
1625 | 17 ^{-0.016} _{-0.034} | 19 +0.021 | 19 ^{+0.095} _{+0.055} | 16.990
17.061 | | | | | | CSB-11
1710 | CSB-11
1712 | | CSB-11
1720 | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 20 +0.095 +0.055 | 17.990
18.061 | | | | | | CSB-11
1810 | CSB-11
1812 | CSB-11
1815 | CSB-11
1820 | CSB-11
1825 | 20 -0.020 -0.041 | 23 +0.021 | 23 +0.095 +0.055 | 19.990
20.071 | | | | | | CSB-11
2010 | CSB-11
2012 | CSB-11
2015 | CSB-11
2020 | CSB-11
2025 | CSB-11
2030 | 22 ^{-0.020} _{-0.041} | 25 +0.021 | 25 ^{+0.095} _{+0.055} | 21.990
22.071 | 1.475 | 0.0 | 0.4 | | | CSB-11
2210 | CSB-11
2212 | CSB-11
2215 | CSB-11
2220 | CSB-11
2225 | CSB-11
2230 | 24 ^{-0.020} _{-0.041} | 27 +0.021 | 27 ^{+0.095} _{+0.055} | 23.990
24.071 | 1.505 | 0.6 | 0.4 | | | | | CSB-11
2415 | CSB-11
2420 | CSB-11
2425 | CSB-11
2430 | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 28 ^{+0.095}
+0.055 | 24.990
25.071 | | | | | | CSB-11
2510 | CSB-11
2512 | CSB-11
2515 | CSB-11
2520 | CSB-11
2525 | CSB-11
2530 | CSB-11
2540 | CSB-11
2550 | 28 -0.020 -0.041 | 32 +0.025 | 32 ^{+0.110} _{+0.065} | 27.990
28.085 | | | | | | | | CSB-11
2815 | CSB-11
2820 | CSB-11
2825 | CSB-11
2830 | CSB-11
2840 | 30 -0.020 -0.041 | 34 +0.025 | 34 ^{+0.110} _{+0.065} | 29.990
30.285 | | | | | | | CSB-11
3012 | CSB-11
3015 | CSB-11
3020 | CSB-11
3025 | CSB-11
3030 | CSB-11
3040 | 32 ^{-0.025} _{-0.050} | 36 ^{+0.025} | 36 ^{+0.110} _{+0.065} | 31.990
32.085 | 1.970 | 1.2 | 0.4 | | | | | | CSB-11
3220 | | CSB-11
3230 | CSB-11
3240 | 35 ^{-0.025} _{-0.050} | 39 +0.025 | 39 ^{+0.110} _{+0.065} | 34.990
35.085 | 2.005 | | 0.4 | | | | CSB-11
3512 | CSB-11
3515 | CSB-11
3520 | CSB-11
3525 | CSB-11
3530 | CSB-11
3540 | CSB-11
3550 | 38 -0.025 | 42 +0.025 | 42 ^{+0.110} _{+0.065} | 37.990
38.085 | CSB-11
3815 | | | CSB-11
3830 | CSB-11
3840 | | | 40 -0.025 | 44 +0.025 | 44 ^{+0.110} _{+0.065} | 39.990
40.085 | | | | | | | CSB-11
4012 | | CSB-11
4020 | CSB-11
4025 | CSB-11
4030 | CSB-11
4040 | CSB-11
4050 | # CSB-11 Metric cylindrical bushes | | | | | | | | | | | | | 0
0.40 | | | | nit:mm | |--|-----------------------|---|--------------------|----------------|----------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|------------------|------------------| | Axle | Housing
H7 | OD
tolerance | ID after fixed | Wall thick- | f, | f ₂ | | | | | L . | 0.40 | | | | | | | | | | ness | | | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | 115 | | | | 50 +0.110 +0.065 | 44.990
45.105 | | | | CSB-11
4520 | CSB-11
4525 | CSB-11
4530 | CSB-11
4540 | CSB-11
4550 | | | | | | | 50 ^{-0.025} _{-0.050} | | | 49.990
50.110 | | | | CSB-11
5020 | | CSB-11
5030 | CSB-11
5040 | CSB-11
5050 | CSB-11
5060 | | | | | | 55 ^{-0.030} _{-0.060} | 60 +0.030 | 60 ^{+0.125} _{+0.075} | | | | | | | CSB-11
5530 | CSB-11
5540 | CSB-11
5550 | CSB-11
5560 | | | | | | 60 ^{-0.030} _{-0.060} | 65 ^{+0.030} | 65 ^{+0.125} _{+0.075} | 59.990
60.110 | 2.460
2.505 | | 0.6 | | | CSB-11
6030 | CSB-11
6040 | CSB-11
6050 | CSB-11
6060 | CSB-11
6070 | | | | | 65 ^{-0.030} _{-0.060} | 70 +0.030 | 70 ^{+0.125} _{+0.075} | 64.990
65.110 | | | | | | CSB-11
6530 | CSB-11
6540 | CSB-11
6550 | CSB-11
6560 | CSB-11
6570 | | | | | 70 -0.030 | 75 ^{+0.030} | 75 ^{+0.125} _{+0.075} | 69.990
70.110 | | | | | | | CSB-11
7040 | CSB-11
7050 | CSB-11
7060 | CSB-11
7070 | CSB-11
7080 | | | | 75 ^{-0.030} _{-0.060} | 80 | | 74.990
75.110 | | | | | | CSB-11
7530 | CSB-11
7540 | CSB-11
7550 | CSB-11
7560 | CSB-11
7570 | CSB-11
7580 | | | | 80 -0.030 | ±0.035 | 85 ^{+0.140} _{+0.090} | 80.020
80.155 | | | | | | | CSB-11
8040 | CSB-11
8050 | CSB-11
8060 | CSB-11
8070 | CSB-11
8080 | CSB-11
80100 | | | | | 90 +0.140 +0.090 | 85.020
85.155 | | | | | | | CSB-11
8540 | | CSB-11
8560 | | CSB-11
8580 | CSB-11
85100 | | | 90 -0.035 | 95 ^{+0.035} | 95 +0.140 +0.090 | 90.020
90.155 | | | | | | | CSB-11
9040 | CSB-11
9050 | CSB-11
9060 | | CSB-11
9080 | CSB-11
90100 | | | | | 100+0.140 | | 2.440
2.490 | 1.8 | 0.6 | | | | | CSB-11
9550 | CSB-11
9560 | | CSB-11
9580 | CSB-11
95100 | | | 100_0.035 | 105 ^{+0.035} | 105+0.140 | 100.020
100.155 | | | | | | | | CSB-11
10050 | CSB-11
10060 | | CSB-11
10080 | | CSB-11
100115 | | | | 110 ^{+0.140} _{+0.090} | | | | | | | | | | CSB-11
10560 | | CSB-11
10580 | | CSB-11
105115 | | | | 115 ^{+0.140} _{+0.090} | | | | | | | | | | CSB-11
11060 | | CSB-11
11080 | | CSB-11
110115 | | | | 125+0.190 | | | | | | | | | | CSB-11
12060 | | CSB-11
12080 | CSB-11
120100 | | | 125_0.040 | 130 ^{+0.040} | 130+0.190 | 125.070
125.210 | | | | | | | | | CSB-11
12560 | | | CSB-11
125100 | CSB-11
125115 | | 130_0.040 | 135 ^{+0.040} | 135 ^{+0.190} _{+0.120} | 130.070
130.210 | 2.415 | | | | | | | | CSB-11
13060 | | CSB-11
13080 | CSB-11
130100 | | | 140_0.040 | 145 ^{+0.040} | 145 ^{+0.190} _{+0.120} | | 2.465 | | 0.6 | | | | | | CSB-11
14060 | | CSB-11
14080 | CSB-11
140100 | | |
150_0.040 | 155 ^{+0.040} | 155 ^{+0.190} _{+0.120} | 150.070
150.210 | | | | | | | | | CSB-11
15060 | | CSB-11
15080 | CSB-11
150100 | | | 160_0.040 | 165 ^{+0.040} | 165 ^{+0.190} _{+0.120} | 160.070
160.210 | | | | | | | | | CSB-11
16060 | | CSB-11
16080 | CSB-11
160100 | CSB-11
160115 | | 180_0.040 | 185 ^{+0.046} | 185 ^{+0.230} _{+0.150} | 180.070
180.216 | | | | | | | | | | | CSB-11
18080 | | | | | | 195 ^{+0.230} _{+0.150} | | 2.415 | 4.0 | | | | | | | | | CSB-11
19080 | CSB-11
190100 | | | | | 205 ^{+0.230} _{+0.150} | | 2.465 | | 0.6 | | | | | | CSB-11
20060 | | CSB-11
20080 | CSB-11
200100 | | | 220_0.046 | 225 ^{+0.046} | 225 ^{+0.230} _{+0.150} | 220.070
220.216 | | 15 4 9 7 | | | | | | | | | CSB-11
22080 | CSB-11
220100 | | | 250_0.046 | 255 ^{+0.052} | 255 ^{+0.280} _{+0.190} | 250.070
250.222 | | | | | | | | | | | CSB-11
25080 | CSB-11
250100 | | | 260_0.052 | 265 ^{+0.052} | 265 ^{+0.280} _{+0.190} | 260.070
260.222 | 2.415 | | | | | | | | | | CSB-11
26080 | CSB-11
260100 | | | | | 285 ^{+0.280} _{+0.190} | | 2.465 | 1.8 | 0.6 | | | | | | | | CSB-11
28080 | CSB-11
280100 | | | 300_0.052 | 305 ^{+0.052} | 305 ^{+0.280} _{+0.190} | | | | | | | | | | | | CSB-11
30080 | CSB-11
300100 | | # CSB-11 Metric flange bushes |
1.1 | | |-----------|---| |
nit:m | r | |
' | | | | Housing | OD | ID after | Designation | Wall | f ₁ | f ₂ | | | Dimens | sion | | |--|----------------------|--|------------------|------------------------------|-----------|----------------|----------------|----|----------------|---------------|--------|---------------------| | Axle | H7 | tolerance | fixed | Designation | thickness | '1 | ' 2 | d₁ | d ₂ | $d_3 \pm 0.5$ | L±0.25 | ℓ ₁ -0.2 | | 6 -0.013 | 8 +0.015 | 6 +0.075 | 5.990 | CSB-11F06040 | | | | 6 | 8 | 12 | 4 | | | -0.028 | | +0.045 | 6.005 | CSB-11F06070 | | | | | 0 | 12 | 7 | | | 8 -0.013 | 10 ^{+0.015} | 8 +0.075 | 7.990 | CSB-11F08055 | | | | 8 | 10 | 15 | 5.5 | | | -0.028 | 10 | +0.045 | 8.055 | CSB-11F08075 | | | | | | | 7.5 | | | -0.016 | 12 +0.018 | +0.075 | 9.990 | CSB-11F10070 | | | | | | | 7 | | | 10 ^{-0.016} _{-0.034} | 12 | 10 +0.075 +0.045 | 10.058 | CSB-11F10090 | | | | 10 | 12 | 18 | 9 | | | | | | | CSB-11F10120 | | | | | | | 12 | | | 0.016 | 14 ^{+0.018} | +0.080 | 11.990 | CSB-11F12070 | | | | | | | 7 | | | 12 ^{-0.016} _{-0.034} | 14 | 12 +0.080 +0.050 | 12.058 | CSB-11F12090 | | | | 12 | 14 | 20 | 9 | | | | | | | CSB-11F12120 | +0.005 | 0.6 | 0.3 | | | | 12 | 1 | | 14 ^{-0.016} _{-0.034} | 16 ^{+0.018} | 14 ^{+0.080} _{+0.050} | 13.990 | CSB-11F14120 | -0.020 | | | 14 | 16 | 22 | 12 | | | -0.054 | | 10.030 | 14.058 | CSB-11F14170 | | | | | | | 17 | | | 0.016 | 17 ^{+0.018} | 4E +0.080 | 14.990 | CSB-11F15090 | | | | 15 | 17 | 23 | 12 | | | 15 ^{-0.016} _{-0.034} | 17 | 15 +0.080 | 15.058 | CSB-11F15120
CSB-11F15170 | | | | 15 | 17 | 23 | 17 | | | 0.046 | .0.040 | 10.000 | 45.000 | CSB-11F15170 | | | | | | | 12 | | | 16 ^{-0.016} _{-0.034} | 18 ^{+0.018} | 16 ^{+0.080} _{+0.050} | 15.990
16.058 | CSB-11F16170 | | | | 16 | 18 | 24 | 17 | | | | | | | CSB-11F18120 | | | | | | | 12 | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 18 +0.080 | 17.990 | CSB-11F18170 | | | | 18 | 20 | 26 | 17 | | | -0.034 | 20 | 18 +0.050 | 18.061 | CSB-11F18200 | | | | 10 | 20 | 20 | 20 | | | | | | | CSB-11F20115 | | | | | | | 11.5 | | | 20 -0.020 | 23 ^{+0.021} | 20 +0.095 +0.055 | 19.990 | CSB-11F20165 | | | | 20 | 23 | 30 | 16.5 | | | -0.041 | | +0.055 | 20.071 | CSB-11F20215 | | | | | | | 21.5 | | | -0.020 | 25 ^{+0.021} | +0.095 | 21.990 | CSB-11F22150 | +0.005 | 0.0 | | | 0.5 | | 15 | | | 22 ^{-0.020} _{-0.041} | 25 | 22 +0.095 +0.055 | 22.071 | CSB-11F22200 | -0.025 | 0.6 | 0.4 | 22 | 25 | 32 | 20 | 1.5 | | | | | | CSB-11F25115 | | | | | | | 11.5 | | | 25 ^{-0.020} _{-0.041} | 28 ^{+0.021} | 25 ^{+0.095} _{+0.055} | 24.990
25.071 | CSB-11F25165 | | | | 25 | 28 | 35 | 16.5 | | | | | | 25.071 | CSB-11F25215 | | | | | | | 21.5 | | | 30 -0.025 | 34 +0.025 | 30 ^{+0.095} _{+0.055} | 29.990 | CSB-11F30160 | | | | 30 | 34 | 42 | 16 | | | -0.050 | 34 | 30+0.055 | 30.085 | CSB-11F30260 | | | | 30 | 34 | 42 | 26 | | | 35 ^{-0.025} _{-0.050} | 39+0.025 | 35 ^{+0.110} _{+0.065} | 34.990 | CSB-11F35160 | +0.005 | 1.2 | 0.4 | 35 | 39 | 47 | 16 | 2 | | -0.050 | | +0.065 | 35.085 | CSB-11F35260 | -0.030 | 1.2 | 0.4 | 30 | 39 | 41 | 26 | | | 40 -0.025 | 44 +0.025 | 40 +0.110 +0.065 | 39.990 | CSB-11F40260 | | | | 40 | 44 | 53 | 26 | | | -0.050 | +4 | +0.065 | 40.085 | CSB-11F40400 | | | | 70 | 77 | 33 | 40 | | # **CSB-11** Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | Axle | Designation | | Washer o | dimension | | Installati | on size | D₁+0.12 | |------|-------------|---------|----------|-----------|----------|---------------------------|---------|----------------------| | Axie | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4}
+0.1 | t±0.2 | D ₁ +0.12 | | 8 | CSB-11WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-11WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-11WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-11WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-11WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-11WC20 | 20 | 36 | 4.5 | 28 | | 1 | 36 | | 20 | CSB-11WC22 | 22 | 38 | 1.5 | 30 | 3 | | 38 | | 22 | CSB-11WC24 | 24 | 42 | | 33 | 3 | | 42 | | 24 | CSB-11WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-11WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-11WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-11WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-11WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-11WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-11WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-11WC62 | 62 | 90 | | 76 | | | 90 | ### Metric standard strip Unit:mm | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-11SP | 500 | 150 | 1.0 | | CSB-11SP | 500 | 150 | 1.5 | | CSB-11SP | 500 | 150 | 2.0 | | CSB-11SP | 500 | 150 | 2.5 | ## CSB-30 Metric cylinrical bushes | Axle | Housing | OD | ID after | Wall
thick- | f, | f ₂ | | | | | L _{-0.40} | (d≤ φ3
d> φ3 | 30 L-0.3
30 L-0.4 |) | | | | | |--|-----------|---|------------------|----------------|-----|----------------|----------------|----------------|----------------|----------------|--------------------|-----------------|----------------------|----------------|----------------|----------------|----|--| | AXIC | H7 | tolerance | fixed | ness | '1 | '2 | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | | 6 -0.013 | 8 +0.015 | 8 +0.055 +0.025 | 5.990
6.055 | | | | CSB-30
0606 | CSB-30
0608 | CSB-30
0610 | | | | | | | | | | | 8 -0.013 | 10 +0.015 | 10 +0.055 +0.025 | 7.990
8.055 | | | | CSB-30
0806 | CSB-30
0808 | CSB-30
0810 | CSB-30
0812 | CSB-30
0815 | | | | | | | | | 10 -0.016 | 12 +0.018 | 12 ^{+0.065} _{+0.030} | 9.990
10.058 | | | | CSB-30
1006 | CSB-30
1008 | CSB-30
1010 | CSB-30
1012 | CSB-30
1015 | CSB-30
1020 | | | | | | | | 12 ^{-0.016} _{-0.034} | 14 +0.018 | 14 +0.065 +0.030 | 11.990
12.058 | | | | CSB-30
1206 | CSB-30
1208 | CSB-30
1210 | CSB-30
1212 | CSB-30
1215 | CSB-30
1220 | CSB-30
1225 | | | | | | | 13 ^{-0.016} _{-0.034} | 15 +0.018 | 15 ^{+.0.065} _{+0.030} | 12.990
13.058 | 0.980 | | | | | CSB-30
1310 | | | CSB-30
1320 | | | | | | | | 14 ^{-0.016} _{-0.034} | 16 +0.018 | 16 ^{+0.065} _{+0.030} | 13.990
14.058 | 1.005 | 0.6 | 0.3 | | | CSB-30
1410 | CSB-30
1412 | CSB-30
1415 | CSB-30
1420 | CSB-30
1425 | | | | | | | 15 ^{-0.016} _{-0.034} | 17 +0.018 | 17 ^{+0.065} _{+0.030} | 14.990
15.058 | | | | | | CSB-30
1510 | CSB-30
1512 | CSB-30
1515 | CSB-30
1520 | CSB-30
1525 | | | | | | | 16 ^{-0.016} _{-0.034} | 18 +0.018 | 18 ^{+0.065} _{+0.030} | 15.990
16.058 | | | | | | CSB-30
1610 | CSB-30
1612 | CSB-30
1615 | CSB-30
1620 | CSB-30
1625 | | | | | | | 17 ^{-0.016} _{-0.034} | 19 +0.021 | 19 ^{+0.075} _{+0.035} | 16.990
17.061 | | | | | | CSB-30
1710 | CSB-30
1712 | | CSB-30
1720 | | | | | | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 20 +0.075 +0.035 | 17.990
18.061 | | | | | | CSB-30
1810 | CSB-30
1812 | CSB-30
1815 | CSB-30
1820 | CSB-30
1825 | | | | | | | 20 -0.020 -0.041 | 23 +0.021 | 23 -0.075 +0.035 | 19.990
20.071 | | | | | | CSB-30
2010 | CSB-30
2012 | CSB-30
2015 | CSB-30
2020 | CSB-30
2025 | CSB-30
2030 | | | | | | 22 -0.020 | 25 +0.021 | 25 ^{+0.075} _{+0.035} | 21.990
22.071 | 1.475 | | | | | CSB-30
2210 | CSB-30
2212 | CSB-30
2215 | CSB-30
2220 | CSB-30
2225 | CSB-30
2230 | | | | | | 24 ^{-0.020} _{-0.041} | 27 +0.021 | 27 ^{+0.075} _{+0.035} | 23.990
24.071 | 1.505 | 0.6 | 0.4 | 0.4 | | | | | CSB-30
2415 | CSB-30
2420 | CSB-30
2425 | CSB-30
2430 | | | | | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 28 ^{+0.075} _{+0.035} | 24.990
25.071 | | | | | | CSB-30
2510 | CSB-30
2512 | CSB-30
2515 | CSB-30
2520 | CSB-30
2525 | CSB-30
2530 | CSB-30
2540 | CSB-30
2550 | | | | 28 -0.020 -0.041 | 32 +0.025 | 32 ^{+0.085} _{+0.045} | 27.990
28.085 | | | | | | | | CSB-30
2815 | CSB-30
2820 | CSB-30
2825 | CSB-30
2830 | CSB-30
2840 | | | | | 30 -0.020 | 34 +0.025 | 34 ^{+0.085} _{+0.045} | 29.990
30.285 | | | | | | | CSB-30
3012 | CSB-30
3015 | CSB-30
3020 | CSB-30
3025 | CSB-30
3030 | CSB-30
3040 | | | | | 32 ^{-0.025} _{-0.050} | 36 +0.025 | 36 ^{+0.085} _{+0.045} | 31.990
32.085 | 1.970
2.005 | | | | | | | CSB-30
3220 | | CSB-30
3230 | CSB-30
3240 | | | | | | 35 ^{-0.025} _{-0.050} | 39 +0.025 | 39 ^{+0.085} _{+0.045} | 34.990
35.085 | | 0.4 | | | | CSB-30
3512 |
CSB-30
3515 | CSB-30
3520 | CSB-30
3525 | CSB-30
3530 | CSB-30
3540 | CSB-30
3550 | | | | | 38 -0.025 -0.050 | 42 +0.025 | 42 ^{+0.085} _{+0.045} | 37.990
38.085 | | | | | | | CSB-30
3815 | | | CSB-30
3830 | CSB-30
3840 | | | | | | 40 -0.025 -0.050 | 44 +0.025 | 44 ^{+0.085} _{+0.045} | 39.990
40.085 | | | | | | | CSB-30
4012 | | CSB-30
4020 | CSB-30
4025 | CSB-30
4030 | CSB-30
4040 | CSB-30
4050 | | | # CSB-30 Metric cylindrical bushes | | | | | | | | | | | | | | | | U | nit:mm | |-----------------------|-----------------------|---|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|------------------|------------------| | Axle | Housing | OD | ID after | Wall
thick- | f ₁ | f ₂ | | | | | L. | 0
0.40 | | | | | | Axie | H7 | tolerance | fixed | ness | ¹ 1 | 12 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | 115 | | 45 -0.025 -0.050 | 50 +0.025 | 50 ^{+0.085} _{+0.045} | 44.990
45.105 | | | | CSB-30
4520 | CSB-30
4525 | CSB-30
4530 | CSB-30
4540 | CSB-30
4550 | | | | | | | -0.030 | 55 | | | | | | CSB-30
5020 | | CSB-30
5030 | CSB-30
5040 | CSB-30
5050 | CSB-30
5060 | | | | | | | | 60 +0.100 +0.055 | | 0.400 | | | | | CSB-30
5530 | CSB-30
5540 | CSB-30
5550 | CSB-30
5560 | | | | | | 0.000 | 65 +0.030 | | | 2.460
2.505 | 1.8 | 0.6 | | | CSB-30
6030 | CSB-30
6040 | CSB-30
6050 | CSB-30
6060 | CSB-30
6070 | | | | | | | 70 +0.100 +0.055 | 64.990
65.110 | | | | | | CSB-30
6530 | CSB-30
6540 | CSB-30
6550 | CSB-30
6560 | CSB-30
6570 | | | | | 70 -0.030 -0.060 | 75 +0.030 | . 0.000 | | | | | | | | CSB-30
7040 | CSB-30
7050 | CSB-30
7060 | CSB-30
7070 | CSB-30
7080 | | | | | | 80 +0.100 +0.055 | | | | | | | CSB-30
7530 | CSB-30
7540 | CSB-30
7550 | CSB-30
7560 | CSB-30
7570 | CSB-30
7580 | | | | 80 -0.030 | | 85 ^{+0.120} _{+0.070} | | | | | | | | CSB-30
8040 | CSB-30
8050 | CSB-30
8060 | CSB-30
8070 | CSB-30
8080 | CSB-30
80100 | | | 85 -0.035 | 90 +0.035 | . 0.01 0 | | | | | | | | CSB-30
8540 | | CSB-30
8560 | | CSB-30
8580 | CSB-30
85100 | | | 90 -0.035 | | 95 +0.120 +0.070 | | 2.440 | | | | | | CSB-30
9040 | CSB-30
9050 | CSB-30
9060 | | CSB-30
9080 | CSB-30
90100 | | | | | 100+0.120 | | 2.440 | 1.8 | 0.6 | | | | | CSB-30
9550 | CSB-30
9560 | | CSB-30
9580 | CSB-30
95100 | | | 100_0.035 | | | | | | | | | | | CSB-30
10050 | CSB-30
10060 | | CSB-30
10080 | | CSB-30
100115 | | | | 110+0.120 +0.070 | | | | | | | | | | CSB-30
10560 | | CSB-30
10580 | | CSB-30
105115 | | 110 -0.035 | | | | | | | | | | | | CSB-30
11060 | | CSB-30
11080 | | CSB-30
110115 | | 120 _{-0.035} | | | | | | | | | | | | CSB-30
12060 | | CSB-30
12080 | CSB-30
120100 | | | | | 130+0.170 | | | | | | | | | | CSB-30
12560 | | | CSB-30
125100 | CSB-30
125115 | | 130 _{-0.040} | 135 ^{+0.040} | 135 ^{+0.170} _{+0.100} | 130.070
130.210 | 2.415 | | 0.6 | | | | | | CSB-30
13060 | | CSB-30
13080 | CSB-30
130100 | | | 140 _{-0.040} | | | | 2.465 | | 0.0 | | | | | | CSB-30
14060 | | CSB-30
14080 | CSB-30
140100 | | | 150 _{-0.040} | | | | | | | | | | | | CSB-30
15060 | | CSB-30
15080 | CSB-30
150100 | | | 160 _{-0.040} | | | | | | | | | | | | CSB-30
16060 | | CSB-30
16080 | CSB-30
160100 | CSB-30
160115 | | 180 _{-0.040} | | | | | | | | | | | | | | CSB-30
18080 | 180100 | | | 190 _{-0.046} | | | | 2.415 | 1.8 | 0.6 | | | | | | 067 | | CSB-30
19080 | CSB-30
190100 | | | 200 _{-0.046} | | | | 2.465 | | | | | | | | CSB-30
20060 | | CSB-30
20080 | CSB-30
200100 | | | 220 _{-0.046} | | | | | | | | | | | | | | CSB-30
22080 | CSB-30
220100 | | | 250 _{-0.046} | | | | | | | | | | | | | | CSB-30
25080 | CSB-30
250100 | | | 260 _{-0.052} | | | | 2.415
2.465 | 1.8 | 0.6 | | | | | | | | CSB-30
26080 | CSB-30
260100 | | | 280 _{-0.052} | | | | 2.465 | | | | | | | | | | CSB-30
28080 | CSB-30
280100 | | | 300 _{-0.052} | 305 0.052 | 305+0.170 | 300.070
300.222 | | | | | | | | | | | CSB-30
30080 | CSB-30
300100 | | ### CSB-30 Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | Axle | Designation | | Washer o | dimension | | Installation | on size | D₁+0.12 | |------|-------------|---------|----------|-----------|----------|---------------------------|---------|----------------------| | Axie | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4}
+0.1 | t±0.2 | D ₁ +0.12 | | 8 | CSB-30WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-30WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-30WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-30WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-30WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-30WC20 | 20 | 36 | 4.5 | 28 | | 1 | 36 | | 20 | CSB-30WC22 | 22 | 38 | 1.5 | 30 | 3 | ' | 38 | | 22 | CSB-30WC24 | 24 | 42 | | 33 | | | 42 | | 24 | CSB-30WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-30WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-30WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-30WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-30WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-30WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-30WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-30WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** Unit:mm | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-30SP | 500 | 150 | 1.0 | | CSB-30SP | 500 | 150 | 1.5 | | CSB-30SP | 500 | 150 | 2.0 | | CSB-30SP | 500 | 150 | 2.5 | # CSB-40 Metric cylindrical bushes | | | | | | | | | | | | | | | | | 011 | it:mm | | | | | | |--|---------------|---|------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|-----------------|------------------------|----------------|----------------|----------------|-------|--|----------------|----------------|--|--| | Axle | Housing
H7 | OD
tolerance | ID after | Wall
thick- | f ₁ | f ₂ | | | | | L _{-0.40} | (d≤ φ3
d> φ3 | 30 L -0.3
30 L -0.4 |) | | | | | | | | | | | 117 | tolcrance | lixcu | ness | | | 6 | 8 | 10 | 12 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | | | | | | 6 -0.013
-0.028 | 8 +0.015 | 8 ^{+0.055} _{+0.025} | 5.990
6.055 | | | | CSB-40
0606 | CSB-40
0608 | CSB-40
0610 | | | | | | | | | | | | | | | 8 ^{-0.013}
-0.028 | 10 +0.015 | 10 +0.055 +0.025 | 7.990
8.055 | | | | CSB-40
0806 | CSB-40
0808 | CSB-40
0810 | CSB-40
0812 | CSB-40
0815 | | | | | | | | | | | | | 10 -0.016 -0.034 | 12 +0.018 | 12 ^{+0.065} _{+0.030} | 9.990
10.058 | | | | CSB-40
1006 | CSB-40
1008 | CSB-40
1010 | CSB-40
1012 | CSB-40
1015 | CSB-40
1020 | | | | | | | | | | | | 12 -0.016 -0.034 | 14 +0.018 | 14 ^{+0.065} _{+0.030} | 11.990
12.058 | | | | CSB-40
1206 | CSB-40
1208 | CSB-40
1210 | CSB-40
1212 | CSB-40
1215 | CSB-40
1220 | CSB-40
1225 | | | | | | | | | | | 13 ^{-0.016} _{-0.034} | 15 +0.018 | 15 ^{+.0.065} _{+0.030} | 12.990
13.058 | 0.980 | 0.6 | 0.3 | | | CSB-40
1310 | | | CSB-40
1320 | | | | | | | | | | | | 14 ^{-0.016} _{-0.034} | 16 +0.018 | 16 ^{+0.065} _{+0.030} | 13.990
14.058 | 1.005 | 0.0 | | | CSB-40
1410 | CSB-40
1412 | CSB-40
1415 | CSB-40
1420 | CSB-40
1425 | | | | | | | | | | | | 15 ^{-0.016} _{-0.034} | 17 +0.018 | | 14.990
15.058 | | | | | | CSB-40
1510 | CSB-40
1512 | CSB-40
1515 | CSB-40
1520 | CSB-40
1525 | | | | | | | | | | | 16 ^{-0.016} _{-0.034} | 18 +0.018 | 18 ^{+0.065} _{+0.030} | 15.990
16.058 | | | | | | CSB-40
1610 | CSB-40
1612 | CSB-40
1615 | CSB-40
1620 | CSB-40
1625 | | | | | | | | | | | 17 ^{-0.016} _{-0.034} | 19 +0.021 | 19 ^{+0.075} _{+0.035} | 16.990
17.061 | | | | | | CSB-40
1710 | CSB-40
1712 | | CSB-40
1720 | | | | | | | | | | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 20 +0.075 +0.035 | 17.990
18.061 | | | | | | CSB-40
1810 | CSB-40
1812 | CSB-40
1815 | CSB-40
1820 | CSB-40
1825 | | | | | | | | | | | 20 -0.020 -0.041 | 23 +0.021 | 23 +0.035 | 19.990
20.071 | | | | | | CSB-40
2010 | CSB-40
2012 | CSB-40
2015 | CSB-40
2020 | CSB-40
2025 | CSB-40
2030 | | | | | | | | | | 22 -0.020 -0.041 | 25 +0.021 | 25 ^{+0.075} _{+0.035} | 21.990
22.071 | 1.475 | 0.6 | 0.4 | | | CSB-40
2210 | CSB-40
2212 | CSB-40
2215 | CSB-40
2220 | CSB-40
2225 | CSB-40
2230 | | | | | | | | | | 24 -0.020 -0.041 | 27 +0.021 | 27 ^{+0.075} _{+0.035} | 23.990
24.071 | 1.505 | 0.0 | 0.4 | | | | | CSB-40
2415 | CSB-40
2420 | CSB-40
2425 | CSB-40
2430 | | | | | | | | | | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 28 ^{+0.075} _{+0.035} | 24.990
25.071 | | | | | | CSB-40
2510 | CSB-40
2512 | CSB-40
2515 | CSB-40
2520 | CSB-40
2525 | CSB-40
2530 | CSB-40
2540 | CSB-40
2550 | | | | | | | | 28 -0.020 -0.041 | 32 +0.025 | 32 ^{+0.085} _{+0.045} | 27.990
28.085 | | | | | | | | CSB-40
2815 | CSB-40
2820 | CSB-40
2825 | CSB-40
2830 | CSB-40
2840 | | | | | | | | | 30 -0.020 -0.041 | 34 +0.025 | 34 ^{+0.085} _{+0.045} | 29.990
30.285 | | | | | | | CSB-40
3012 | CSB-40
3015 | CSB-40
3020 | CSB-40
3025 | CSB-40
3030 | CSB-40
3040 | | | | | | | | | 32 ^{-0.025} _{-0.050} | 36 +0.025 | 36 ^{+0.085} _{+0.045} | 31.990
32.085 | 1.970 2.005 1.2 | 0.4 | | | | | | CSB-40
3220 | | CSB-40
3230 | CSB-40
3240 | | | | | | | | | | 35 ^{-0.025} _{-0.050} | 39 +0.025 | 39 ^{+0.085} _{+0.045} | 34.990
35.085 | | 0.4 | | | | CSB-40
3512 |
CSB-40
3515 | CSB-40
3520 | CSB-40
3525 | CSB-40
3530 | CSB-40
3540 | CSB-40
3550 | | | | | | | | | 38 ^{-0.025} _{-0.050} | 42 +0.025 | 42 ^{+0.085} _{+0.045} | 37.990
38.085 | | | | | | | | | | | | | CSB-40
3815 | | | CSB-40
3830 | CSB-40
3840 | | | | 40 -0.025 -0.050 | 44 +0.025 | 44 ^{+0.085} _{+0.045} | 39.990
40.085 | | | | | | | CSB-40
4012 | | CSB-40
4020 | CSB-40
4025 | CSB-40
4030 | CSB-40
4040 | CSB-40
4050 | | | | | | | # CSB-40 Metric cylindrical bushes | | | | | | | | | | | | | 0 | | | U | nit:mr | |--|-----------------------|---|--------------------|----------------|-----|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|------------------|----------------| | Axle | Housing | | ID after | Wall thick- | f, | f ₂ | | | | | L. | 0
0.40 | | | | | | | H7 | tolerance | fixed | ness | •1 | •2 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | 115 | | 45 -0.025 -0.050 | 50 +0.025 | 50 ^{+0.085} _{+0.045} | | | | | CSB-40
4520 | CSB-40
4525 | CSB-40
4530 | CSB-40
4540 | CSB-40
4550 | | | | | | | 50 -0.025 -0.050 | 55 ^{+0.030} | 55 ^{+0.100} _{+0.055} | 49.990
50.110 | | | | CSB-40
5020 | | CSB-40
5030 | CSB-40
5040 | CSB-40
5050 | CSB-40
5060 | | | | | | 55 ^{-0.030} _{-0.060} | 60 +0.030 | 60 ^{+0.100} _{+0.055} | 54.990
55.110 | | | | | | CSB-40
5530 | CSB-40
5540 | CSB-40
5550 | CSB-40
5560 | | | | | | 60 ^{-0.030} _{-0.060} | 65 +0.030 | 65 ^{+0.100} _{+0.055} | 59.990
60.110 | 2.460
2.505 | 1.8 | 0.6 | | | CSB-40
6030 | CSB-40
6040 | CSB-40
6050 | CSB-40
6060 | CSB-40
6070 | | | | | | | 70 +0.100 +0.055 | | | | | | | CSB-40
6530 | CSB-40
6540 | CSB-40
6550 | CSB-40
6560 | CSB-40
6570 | | | | | 70 -0.030 | 75 +0.030 | 75 ^{+0.100} _{+0.055} | | | | | | | | CSB-40
7040 | CSB-40
7050 | CSB-40
7060 | CSB-40
7070 | CSB-40
7080 | | | | 75 -0.030 -0.060 | 80 +0.030 | 80 +0.100 +0.055 | 74.990
75.110 | | | | | | CSB-40
7530 | CSB-40
7540 | CSB-40
7550 | CSB-40
7560 | CSB-40
7570 | CSB-40
7580 | | | | 80 -0.030 | 85 +0.035 | 85 ^{+0.120} _{+0.070} | 80.020
80.155 | | | | | | | CSB-40
8040 | CSB-40
8050 | CSB-40
8060 | CSB-40
8070 | CSB-40
8080 | CSB-40
80100 | | | 85 -0.035 | 90 +0.035 | 90 +0.120 | | | | | | | | CSB-40
8540 | | CSB-40
8560 | | CSB-40
8580 | CSB-40
85100 | | | | | 95 +0.120 +0.070 | 90.020
90.155 | | | | | | | CSB-40
9040 | CSB-40
9050 | CSB-40
9060 | | CSB-40
9080 | CSB-40
90100 | | | | | 100+0.120 | 95.020
95.155 | 2.440
2.490 | 1.8 | 0.6 | | | | | CSB-40
9550 | CSB-40
9560 | | CSB-40
9580 | CSB-40
95100 | | | | | 105 ^{+0.120} _{+0.070} | | 2.490 | | | | | | | CSB-40
10050 | CSB-40
10060 | | CSB-40
10080 | | CSB-4
10011 | | | | 110 ^{+0.120} _{+0.070} | | | | | | | | | | CSB-40
10560 | | CSB-40
10580 | | CSB-4
10511 | | | | 115 ^{+0.120} _{+0.070} | | | | | | | | | | CSB-40
11060 | | CSB-40
11080 | | CSB-4
11011 | | | | 125+0.170 | | | | | | | | | | CSB-40
12060 | | CSB-40
12080 | CSB-40
120100 | | | | | 130+0.170 | | | | | | | | | | CSB-40
12560 | | | CSB-40
125100 | CSB-4
12511 | | 130 _{-0.040} | 135 ^{+0.040} | 135+0.170 | 130.070
130.210 | 2.415
2.465 | 1.0 | 0.6 | | | | | | CSB-40
13060 | | CSB-40
13080 | CSB-40
130100 | | | | | 145 ^{+0.170} _{+0.100} | 140.210 | 2.465 | 1.0 | 0.6 | | | | | | CSB-40
14060 | | CSB-40
14080 | CSB-40
140100 | | | | | 155 ^{+0.170} _{+0.100} | | | | | | | | | | CSB-40
15060 | | CSB-40
15080 | CSB-40
150100 | | | 160 _{-0.040} | 165 ^{+0.040} | 165 ^{+0.170} _{+0.100} | 160.070
160.210 | | | | | | | | | CSB-40
16060 | | CSB-40
16080 | CSB-40
160100 | 16011 | | 180 _{-0.040} | 185 ^{+0.046} | 185 ^{+0.210} _{+0.130} | 180.070
180.216 | | | | | | | | | | | CSB-40
18080 | CSB-40
180100 | | | | | 195 ^{+0.210} _{+0.130} | | 2.415 | 1.8 | 0.6 | | | | | | | | CSB-40
19080 | CSB-40
190100 | | | 200 _{-0.046} | 205 ^{+0.046} | 205 ^{+0.210} _{+0.130} | 200.070
200.216 | 2.465 | 1.8 | 0.0 | | | | | | CSB-40
20060 | | CSB-40
20080 | CSB-40
200100 | | | 220 _{-0.046} | 225 ^{+0.046} | 225 ^{+0.210} _{+0.130} | 220.070
220.216 | | | | | | | | | | | CSB-40
22080 | CSB-40
220100 | | | | | 255 ^{+0.260} _{+0.170} | | | | | | | | | | | | CSB-40
25080 | CSB-40
250100 | | | 260 _{-0.052} | 265 ^{+0.052} | 265 ^{+0.260} _{+0.170} | 260.070
260.222 | 2.415 | | 0.6 | | | | | | | | CSB-40
26080 | CSB-40
260100 | | | | | 285 ^{+0.260} _{+0.170} | | 2.465 | 1.8 | 0.0 | | | | | | | | CSB-40
28080 | CSB-40
280100 | | | 300 _{-0.052} | 305 ^{+0.052} | 305 ^{+0.260} _{+0.170} | 300.070
300.222 | | | | | | | | | | | CSB-40
30080 | CSB-40
300100 | | # CSB-40 Metric flange bushes | | | m | | |--|--|---|--| | | | | | | | | | | | Anda | Housing | OD | ID after | Designation | Wall | £ | f | | | Dimens | sion | | |--|----------------------|--|------------------|--------------|-----------|----------------|----------------|----------------|----------------|---------------------|--------|---------------------| | Axle | H7 | tolerance | fixed | Designation | thickness | f ₁ | f ₂ | d ₁ | d ₂ | d ₃ ±0.5 | L±0.25 | ℓ ₁ -0.2 | | 6 -0.013 | 8 +0.015 | 6 +0.055 | 5.990 | CSB-40F06040 | | | | 6 | 8 | 12 | 4 | | | -0.028 | | +0.025 | 6.005 | CSB-40F06070 | | | | 0 | 0 | 12 | 7 | | | 8 -0.013 | 10 +0.015 | 8 +0.055 | 7.990 | CSB-40F08055 | | | | 8 | 10 | 15 | 5.5 | | | -0.028 | 10 | +0.025 | 8.055 | CSB-40F08075 | | | | | 10 | 13 | 7.5 | | | 0.040 | | .0.055 | 0.000 | CSB-40F10070 | | | | | | | 7 | | | 10 ^{-0.016} _{-0.034} | 12 +0.018 | 10 +0.055 +0.025 | 9.990
10.058 | CSB-40F10090 | | | | 10 | 12 | 18 | 9 | | | | | | 10.000 | CSB-40F10120 | | | | | | | 12 | | | 0.016 | .0.040 | 10.005 | 11 000 | CSB-40F12070 | | | | | | | 7 | | | 12 ^{-0.016} _{-0.034} | 14 +0.018 | 12 +0.065 +0.030 | 11.990
12.058 | CSB-40F12090 | | | | 12 | 14 | 20 | 9 | | | | | | 12.000 | CSB-40F12120 | +0.005 | 0.6 | 0.3 | | | | 12 | 1 | | 14 ^{-0.016} _{-0.034} | 16 ^{+0.018} | 14 ^{+0.065} _{+0.030} | 13.990 | CSB-40F14120 | -0.020 | 0.0 | 0.5 | 14 | 16 | 22 | 12 | ' | | -0.034 | 10 | +0.030 | 14.058 | CSB-40F14170 | | | | 14 | 10 | 22 | 17 | | | | | | | CSB-40F15090 | | | | | | | 9 | | | 15 ^{-0.016} _{-0.034} | 17 +0.018 | 15 ^{+0.065} _{+0.030} | 14.990
15.058 | CSB-40F15120 | | | | 15 | 17 | 23 | 12 | | | | | *0.000 | 13.036 | CSB-40F15170 | | | | | | | 17 | | | 16 ^{-0.016} _{-0.034} | 18 +0.018 | 16 ^{+0.065} _{+0.030} | 15.990 | CSB-40F16120 | | | | 16 | 18 | 24 | 12 | | | -0.034 | 10 | +0.030 | 16.058 | CSB-40F16170 | | | | | | - 1 | 17 | | | 0.046 | | .0.005 | 47.000 | CSB-40F18120 | | | | | | | 12 | | | 18 ^{-0.016} _{-0.034} | 20 +0.021 | 18 ^{+0.065} _{+0.030} | 17.990
18.061 | CSB-40F18170 | | | | 18 | 20 | 26 | 17 | | | | | | 10.001 | CSB-40F18200 | | | | | | | 20 | | | 0.020 | .0.004 | 10.075 | 10.000 | CSB-40F20115 | | | | | | | 11.5 | | | 20 -0.020 | 23 +0.021 | 20 +0.075 +0.035 | 19.990
20.071 | CSB-40F20165 | | | | 20 | 23 | 30 | 16.5 | | | | | | 20.071 | CSB-40F20215 | | | | | | | 21.5 | | | 22 ^{-0.020} _{-0.041} | 25 +0.021 | 22 ^{+0.075} _{+0.035} | 21.990 | CSB-40F22150 | +0.005 | 0.6 | 0.4 | 22 | 25 | 32 | 15 | 1.5 | | | 20 | +0.035 | 22.071 | CSB-40F22200 | -0.025 | 0.0 | 0.1 | | | 02 | 20 | 1.0 | | -0.020 | +0.021 | +0.075 | 24.990 | CSB-40F25115 | | | | | | | 11.5 | | | 25 ^{-0.020} _{-0.041} | 28 +0.021 | 25 +0.035 | 25.071 | CSB-40F25165 | | | | 25 | 28 | 35 | 16.5 | | | | | | | CSB-40F25215 | | | | | | | 21.5 | | | 30 ^{-0.025} _{-0.050} | 34 +0.025 | 30 ^{+0.075} _{+0.035} | 29.990 | CSB-40F30160 | | | | 30 | 34 | 42 | 16 | | | -0.050 | | +0.035 | 30.085 | CSB-40F30260 | | | | | 0. | 12 | 26 | | | 35 ^{-0.025} _{-0.050} | 39 +0.025 | 35 ^{+0.085} _{+0.045} | 34.990 | CSB-40F35160 | +0.005 | 1.2 | 0.4 | 35 | 39 | 47 | 16 | 2 | | -0.050 | | +0.045 | 35.085 | CSB-40F35260 | -0.030 | 1.2 | 0.4 | | | ,,, | 26 | _ | | 40 -0.025 | 44 +0.025 | 40 +0.085 +0.045 | 39.990 | CSB-40F40260 | | | | 40 | 44 | 53 | 26 | | | -0.050 | 77 | +0.045 | 40.085 | CSB-40F40400 | | | | -10 | 77 | | 40 | | ### **CSB-40** Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | | | | Washer o | dimension | | Installati | on size | | |------|-------------|---------|----------|--------------|----------|-------------------|---------|---------| | Axle | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t±0.2 | D₁+0.12 | | 8 | CSB-40WC10 | 10 | 20 | | 15 | | | 20 | | 10 | CSB-40WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-40WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-40WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-40WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-40WC20 | 20 | 36 | l . <u>-</u> | 28 | 3 | 1 | 36 | | 20 | CSB-40WC22 | 22 | 38 | 1.5 | 30 | | ı | 38 | | 22 | CSB-40WC24 | 24 | 42 | | 33 | 3 | | 42 | | 24 | CSB-40WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-40WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-40WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-40WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-40WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-40WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-40WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-40WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** Unit:mm | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-40SP | 500 | 150 | 1.0 | | CSB-40SP | 500 | 150 | 1.5 | | CSB-40SP | 500 | 150 | 2.0 | | CSB-40SP | 500 | 150 | 2.5 | # CSB-20 Metric cylindrical bushes | Axle | Housing | OD | ID after | Wall | Oil | f₁ | f ₂ | | |
| | L. | 0
0.40 | | | | | |----------------------|----------------------|--|------------------|----------------|------|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | h8 | | tolerance | fixed | thick-
ness | hole | 1 | 12 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | | | | 12 ^{+0.065} _{+0.030} | | | | | | CSB-20
1010 | CSB-20
1015 | CSB-20
1020 | | | | | | | | | | | 14 ^{+0.065} _{+0.030} | | | | | | CSB-20
1210 | CSB-20
1215 | CSB-20
1220 | | | | | | | | | | | 16 ^{+0.065} _{+0.030} | | 0.955 | | 0.6 | 0.3 | | CSB-20
1415 | CSB-20
1420 | | | | | | | | | | | 17 ^{+0.065} _{+0.030} | | 0.980 | 4 | 0.6 | 0.3 | | CSB-20
1515 | CSB-20
1520 | CSB-20
1525 | | | | | | | | | | 18 ^{+0.065} _{+0.030} | | | 4 | | | | CSB-20
1615 | CSB-20
1620 | CSB-20
1625 | | | | | | | | 18 _{-0.027} | 20 ^{+0.021} | 20 ^{+0.075} _{+0.035} | 18.040
18.111 | | | | | | CSB-20
1815 | CSB-20
1820 | CSB-20
1825 | | | | | | | | | | 23 ^{+0.075} _{+0.035} | | | | | | | CSB-20
2015 | CSB-20
2020 | CSB-20
2025 | CSB-20
2030 | | | | | | | | | 25 ^{+0.075} _{+0.035} | | 1.445
1.475 | | 0.6 | 0.4 | | CSB-20
2215 | | CSB-20
2225 | | | | | | | | | | 28 ^{+0.075} _{+0.035} | | | | | | | CSB-20
2515 | CSB-20
2520 | CSB-20
2525 | CSB-20
2530 | | | | | | | 28 _{-0.033} | 32 ^{+0.025} | 32 ^{+0.085} _{+0.045} | 28.060
28.155 | | 6 | | | | | CSB-20
2820 | | CSB-20
2830 | | | | | | | 30 _{-0.033} | 34 ^{+0.025} | 34 ^{+0.085} _{+0.045} | 30.060
30.155 | 1.935 | | 1.2 | 0.4 | | | CSB-20
3020 | CSB-20
3025 | CSB-20
3030 | | CSB-20
3040 | | | | | 35 _{-0.039} | 39 ^{+0.025} | 39 ^{+0.085} _{+0.045} | 35.060
35.155 | 1.970 | | 1.2 | 0.4 | | | CSB-20
3520 | | CSB-20
3530 | CSB-20
3535 | CSB-20
3540 | | | | | 40 _{-0.039} | | 44 ^{+0.085} _{+0.045} | | | | | | | | CSB-20
4020 | | CSB-20
4030 | | CSB-20
4040 | | CSB-20
4050 | | | 45 _{-0.039} | 50 ^{+0.025} | 50 ^{+0.085} _{+0.045} | | | | | | | | CSB-20
4520 | | CSB-20
4530 | | CSB-20
4540 | CSB-20
4545 | CSB-20
4550 | | | | | 55 ^{+0.100} _{+0.055} | | 2.415 | 8 | 1 Ω | 0.6 | | | | | CSB-20
5030 | | CSB-20
5040 | | CSB-20
5050 | CSB-20
5060 | | 55 _{-0.046} | 60 ^{+0.030} | 60 ^{+0.100} _{+0.055} | | 2.460 | | 1.8 | 0.6 | | | | | CSB-20
5530 | | CSB-20
5540 | | CSB-20
5550 | CSB-20
5560 | | 60 _{-0.046} | 65 ^{+0.030} | 65 ^{+0.100} _{+0.055} | 60.080
60.200 | | | | | | | | | CSB-20
6030 | | CSB-20
6040 | | CSB-20
6050 | CSB-20
6060 | # CSB-20 Metric cylindrical bushes | Axle | Housing | OD | ID after | Wall | Oil | | | | | | | L _{-0.40} | | | | | |-----------------------|-----------------------|---|--------------------|----------------|------|----------------|----------------|----------------|-----------------|-----------------|-----------------|--------------------|-----------------|------------------|------------------|------------------| | h8 | H7 | tolerance | fixed | thick-
ness | hole | f ₁ | f ₂ | 40 | 50 | 60 | 80 | 90 | 95 | 100 | 110 | 120 | | 65 _{-0.046} | 70 +0.030 | 70 ^{+0.100} _{+0.055} | 65.080
65.200 | | | | | CSB-20
6540 | | CSB-20
6560 | | | | | | | | 70 -0.046 | 75 ^{+0.030} | 75 ^{+0.100} _{+0.055} | 70.080
70.200 | 2.415
2.460 | 8 | 1.8 | 0.6 | CSB-20
7040 | CSB-20
7050 | | CSB-20
7080 | | | | | | | 75 _{-0.046} | 80 +0.030 | 80 ^{+0.100} _{+0.055} | 75.080
75.200 | | | | | CSB-20
7540 | | CSB-20
7560 | CSB-20
7580 | | | | | | | 80 _{-0.046} | 85 ^{+0.035} | 85 ^{+0.120} _{+0.070} | 80.100
80.265 | | | | | CSB-20
8040 | | CSB-20
8060 | CSB-20
8080 | | | | | | | 85 _{-0.054} | 90 +0.035 | 90 +0.120 +0.070 | 85.100
85.265 | | | | | CSB-20
8540 | | CSB-20
8560 | CSB-20
8580 | | | | | | | 90 _{-0.054} | 95 ^{+0.035} | 95 ^{+0.120} _{+0.070} | 90.100
90.265 | | | 1.8 | 0.6 | CSB-20
9040 | | CSB-20
9060 | CSB-20
9080 | CSB-20
9090 | | | | | | 100 _{0.054} | 105 ^{+0.035} | 105 ^{+0.120} _{+0.070} | 100.100
100.265 | | | 1.0 | 0.6 | | CSB-20
10050 | | CSB-20
10080 | | CSB-20
10095 | | | | | 105 _{0.054} | 110 +0.035 | 110 ^{+0.120} _{+0.070} | 105.110
105.265 | | 9.5 | | | | | CSB-20
10560 | CSB-20
10580 | | CSB-20
10595 | | CSB-20
105110 | | | 110 _{-0.054} | 115 ^{+0.035} | 115 ^{+0.120} _{+0.070} | 110.110
110.265 | | | | | | | CSB-20
11060 | CSB-20
11080 | | CSB-20
11095 | | CSB-20
110110 | | | 120 _{0.054} | 125 ^{+0.040} | 125 ^{+0.170} _{+0.100} | 120.110
120.270 | | | | | | | CSB-20
12060 | CSB-20
12080 | | | | CSB-20
120110 | | | 125 _{0.063} | 130 ^{+0.040} | 130 ^{+0.170} _{+0.100} | 125.110
125.270 | | | | | | | CSB-20
12560 | | | | | CSB-20
125110 | | | 130_0.063 | 135 ^{+0.040} | 135 ^{+0.170} _{+0.100} | 130.110
130.270 | | | | | | 13050 | 13060 | | | | CSB-20
130100 | | | | 140 _{-0.063} | 145 ^{+0.040} | 145 ^{+0.170} _{+0.100} | 140.110
140.270 | | | | | | CSB-20
14050 | CSB-20
14060 | CSB-20
14080 | | | CSB-20
140100 | | | | 150 _{-0.063} | 155 ^{+0.040} | 155 ^{+0.170} _{+0.100} | 150.110
150.270 | 2.385 | | | | | CSB-20
15050 | CSB-20
15060 | | | | CSB-20
150100 | | | | 160 _{-0.063} | 165 ^{+0.040} | 165 ^{+0.170} _{+0.100} | 160.110
160.270 | 2.450 | | | | | CSB-20
16050 | CSB-20
16060 | CSB-20
16080 | | | CSB-20
160100 | | | | 170 _{0.063} | 175 ^{+0.040} | 175 ^{+0.170} _{+0.100} | 170.110
170.270 | | | | | | CSB-20
17050 | | CSB-20
17080 | | | CSB-20
170100 | | | | 180_0.063 | 185 ^{+0.046} | 185 ^{+0.210} _{+0.130} | 180.110
180.276 | | 9.5 | 1.8 | 0.6 | | CSB-20
18050 | CSB-20
18060 | CSB-20
18080 | | | CSB-20
180100 | | | | 190 _{0.072} | 195 ^{+0.046} | 10.100 | 190.110
190.276 | | | | | | 19050 | 19060 | | | | CSB-20
190100 | | CSB-20
190120 | | 200 _{-0.072} | | 205 ^{+0.210} _{+0.130} | 200.110
200.276 | | | | | | CSB-20
20050 | CSB-20
20060 | CSB-20
20080 | | | CSB-20
200100 | | CSB-20
200120 | | | | 225 ^{+0.210} _{+0.130} | 220.110
220.276 | | | | | | CSB-20
22050 | 22060 | | | | CSB-20
220100 | | CSB-20
220120 | | 240 _{0.072} | 245 ^{+0.046} | 245 ^{+0.210} _{+0.130} | 240.110
240.276 | | | | | | CSB-20
24050 | | CSB-20
24080 | | | CSB-20
240100 | | CSB-20
240120 | | 250 _{0.072} | | 255 ^{+0.260} _{+0.170} | 250.110
250.282 | | 9.5 | | | | 25050 | 25060 | | | | CSB-20
250100 | | CSB-20
250120 | | 260 _{0.081} | 265 ^{+0.052} | 265 ^{+0.260} _{+0.170} | 260.110
260.282 | | 0.0 | | | | CSB-20
26050 | CSB-20
26060 | CSB-20
26080 | | | CSB-20
260100 | | CSB-20
260120 | | 280 _{0.081} | 285 ^{+0.052} | 285 ^{+0.260} _{+0.170} | 280.110
280.282 | | | | | | | CSB-20
28050 | CSB-20
28060 | CSB-20
28080 | | | CSB-20
280100 | | | 300 _{-0.081} | 305 ^{+0.052} | 305 ^{+0.260} _{+0.170} | 300.110
300.282 | | | | | | CSB-20
30050 | | CSB-20
30080 | | | CSB-20
300100 | | CSB-20
300120 | # CSB-20 Metric thrust washer and strip #### **Metric thrust washer** Unit:mm | A I . | Designation | | Washer din | nension | | Ins | tallation siz | ze | |-------|-------------|---------|------------|---------|----------|-------------------|---------------|----------------------| | Axle | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t ±0.2 | D ₁ +0.12 | | 8 | CSB-20WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-20WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-20WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-20WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-20WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-20WC20 | 20 | 36 | | 28 | | | 36 | | 20 | CSB-20WC22 | 22 | 38 | 1.5 | 30 | 3 | 1 | 38 | | 22 | CSB-20WC24 | 24 | 42 | | 33 |) S | | 42 | | 24 | CSB-20WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-20WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-20WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-20WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-20WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-20WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-20WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-20WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** Lubrication pocket | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-20SP | 500 | 150 | 1.0 | | CSB-20SP | 500 | 150 | 1.5 | | CSB-20SP | 500 | 150 | 2.0 | | CSB-20SP | 500 | 150 | 2.5 | ## CSB-20 Inch cylindrical bushes | | | | | | | | | | | | <u> </u> | 11t:inch | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|--------|---|--|----------|----------| | Recom | mended | installed | | | | | | 1 0 04 | 0 | | | | | shaft
Dia | housing
bore | bearing
d | | | | L | .engtn | ±0.01 | U | | | | | 0.3648
0.3639 | 0.4694
0.4687 | 0.3694
0.3667 | CSB-20
06IB06 | CSB-20
06IB08 | CSB-20
06IB12 | | | | | | | | | 0.4273
0.4263 | 0.5319
0.5312 | 0.4319
0.4292 | CSB-20
07IB08 | CSB-20
07IB12 | | | | | | | | | | 0.4897
0.4887 | 0.5944
0.5937 | 0.4944
0.4917 | CSB-20
08IB06 | CSB-20
08IB08 | CSB-20
08IB10 | CSB-20
08IB14 | | | | | | | | 0.5522
0.5512 | 0.6569
0.6562 | 0.5569
0.5542 | CSB-20
09IB08 | CSB-20
09IB12 | | | | | | | | | | 0.6146
0.6136 | 0.7195
0.7178 | 0.6195
0.6167 | CSB-20
10IB08 | CSB-20
10IB10 | CSB-20
10IB12 | CSB-20
10IB14 | | | | | | | | 0.6770
0.6760 | 0.7820
0.7812 | 0.6820
0.6792 | CSB-20
11IB14 | | | | | | | | | | | 0.7390
0.7378 | 0.8758
0.8750 | 0.7444
0.7412 | CSB-20
12IB08 | CSB-20
12IB12 | CSB-20
12IB16 | |
| | | | | | | 0.8639
0.8627 | 1.0008
1.0000 | 0.8694
0.8662 | CSB-20
14IB12 | CSB-20
14IB14 | CSB-20
14IB16 | | | | | | | | | 0.9888
0.9876 | 1.1258
1.1250 | 0.9944
0.9912 | CSB-20
16IB12 | CSB-20
16IB16 | CSB-20
16IB24 | | | | | | | | | 1.1138
1.1126 | 1.2822
1.2812 | 1.1202
1.1164 | CSB-20
18IB12 | CSB-20
18IB16 | | | | | | | | | | 1.2387
1.2371 | 1.4072
1.4062 | 1.2452
1.2414 | CSB-20
20IB12 | CSB-20
20IB16 | CSB-20
20IB20 | CSB-20
20IB28 | | | | | | | | 1.3635
1.3619 | 1.5322
1.5312 | 1.3702
1.3664 | CSB-20
22IB16 | CSB-20
22IB22 | CSB-20
22IB28 | | | | | | | | | 1.4884
1.4868 | 1.6572
1.6562 | 1.4952
1.4914 | CSB-20
24IB16 | CSB-20
24IB20 | CSB-20
24IB24 | CSB-20
24IB32 | | | | | | | | 1.6133
1.6117 | 1.7822
1.7812 | 1.6202
1.6164 | CSB-20
26IB16 | CSB-20
26IB24 | | | | | | | | | | 1.7383
1.7367 | 1.9385
1.9375 | 1.7461
1.7415 | CSB-20
28IB16 | CSB-20
28IB24 | CSB-20
28IB28 | CSB-20
28IB32 | | | | | | | | 1.8632
1.8616 | 2.0637
2.0625 | 1.8713
1.8665 | CSB-20
30IB16 | CSB-20
30IB30 | CSB-20
30IB36 | | | | | | | | | 1.9881
1.9863 | 2.1887
2.1875 | 1.9963
1.9915 | CSB-20
32IB16 | CSB-20
32IB24 | CSB-20
32IB32 | CSB-20
32IB40 | | | | | | | | 2.2378
2.2360 | 2.4387
2.4375 | 2.2463
2.2415 | CSB-20
36IB32 | CSB-20
36IB36 | CSB-20
36IB40 | | | | | | | | | 2.4875
2.4857 | 2.6887
2.6875 | 2.4963
2.4915 | CSB-20
40IB32 | CSB-20
40IB40 | | | | | | | | | | 2.7351
2.7333 | 2.9387
2.9375 | 2.7457
2.7393 | CSB-20
44IB32 | CSB-20
44IB40 | CSB-20
44IB48 | CSB-20
44IB56 | | | | | | | | 2.9849
2.9831 | 3.1889
3.1875 | 2.9959
2.9893 | CSB-20
48IB32 | CSB-20
48IB48 | CSB-20
48IB60 | | | | | | | | | 3.4844
3.4822 | 3.6889
3.6875 | 3.4959
3.4893 | CSB-20
56IB40 | CSB-20
56IB48 | CSB-20
56IB60 | | | | | | | | | 3.9839
3.9817 | 4.1889
4.1875 | 3.9959
3.9893 | CSB-20
64IB48 | CSB-20
64IB60 | CSB-20
64IB76 | | | | | | | | # CSB-20 Inch thrust washer ### Inch Thrust washer Unit:inch" | | | Dimens | ion | | instal | lation size | | |---------------|---------------------------------------|--------------------|------------------|-------------|-------------|-------------|--------------| | Specification | inner side
d+0.010 | outside
D-0.010 | Т | M
-0.010 | h
+0.010 | t
±0.010 | D1
+0.010 | | CSB-20 WC06IB | 0.500 | 0.875 | | 0.692 | 0.067 | | 0.875 | | CSB-20 WC07IB | 0.562 | 1.000 | | 0.786 | 0.067 | | 1.000 | | CSB-20 WC08IB | 0.625 | 1.125 | | 0.880 | | | 1.125 | | CSB-20 WC09IB | 0.687 1.187 0.750 1.250 | | 0.942 | 0.000 | | 1.187 | | | CSB-20 WC10IB | 0.750 | 1.250 | | 1.005 | 0.099 | 0.04 | 1.250 | | CSB-20 WC11IB | 0.812 | 1.375 | | 1.099 | | | 1.375 | | CSB-20 WC12IB | 0.875 | 5 1.500
7 1.625 | 0.0000 | 1.192 | | | 1.500 | | CSB-20 WC13IB | 0.937 | | 0.0660
0.0625 | 1.286 | 0.130 | | 1.625 | | CSB-20 WC14IB | 1.000 | | 0.0020 | 1.380 | | | 1.750 | | CSB-20 WC16IB | 1.125 | 2.000 | | 1.567 | | | 2.000 | | CSB-20 WC18IB | 1.250 | 2.125 | | 1.692 | 0.161 | | 2.125 | | CSB-20 WC20IB | 1.375 | 2.250 | | 1.817 | | | 2.250 | | CSB-20 WC22IB | 1.500 | 2.500 | | 2.005 | | | 2.500 | | CSB-20 WC24IB | 1.625 | 2.625 | | 2.130 | | | 2.625 | | CSB-20 WC26IB | 1.750 | 2.750 | | 2.255 | 0.402 | | 2.750 | | CSB-20 WC28IB | 2.000 | 3.000 | 0.0070 | 2.505 | 0.192 | | 3.000 | | CSB-20 WC30IB | 2.125 | 3.125 | 0.0970 | 2.630 | | 0.07 | 3.125 | | CSB-20 WC32IB | 2.250 | 3.250 | 0.0933 | 2.755 | | | 3.250 | ### CSB-22 Metric cylindrical bushes | | Housing | | ID after | Wall
thick- | Oil | f ₁ | f ₂ | | | | | L. | 0
0.40 | | | | | | | |----------------------|----------------------|--|------------------|----------------|------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | h8 | | tolerance | | ness | hole | -1 | •2 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | | | | 10_0.022 | 12 ^{+0.018} | 12 ^{+0.065} _{+0.030} | 10.040
10.108 | | | | | CSB-22
1010 | CSB-22
1015 | CSB-22
1020 | | | | | | | | | | | 12 _{-0.027} | 14+0.018 | 14 ^{+0.065} _{+0.030} | 12.010 | | | | | CSB-22
1210 | CSB-22
1215 | CSB-22
1220 | | | | | | | | | | | 14 | +0.018 | 16 +0.065 | 14.040
14.108 | 0.955 | | | 0.0 | | CSB-22
1415 | CSB-22
1420 | | | | | | | | | | | 15 _{-0.027} | 17 ^{+0.018} | 17 ^{+0.065} _{+0.030} | 15.040
15.108 | 0.980 | , | 0.6 | 0.3 | | CSB-22
1515 | CSB-22
1520 | CSB-22
1525 | | | | | | | | | | 16,027 | 18 ^{+0.018} | 18+0.065 | 16.040
16.108 | | 4 | | | | CSB-22
1615 | CSB-22
1620 | CSB-22
1625 | | | | | | | | | | 18 _{-0.027} | 20 ^{+0.021} | 20 ^{+0.075} _{+0.035} | 18.040
18.111 | | | | | CSB-22
1815 | CSB-22
1820 | CSB-22
1825 | | | | | | | | | | | 20 _{-0.033} | 23 ^{+0.021} | 23 ^{+0.075} _{+0.035} | 20.050
20.131 | | | | | | CSB-22
2015 | CSB-22
2020 | CSB-22
2025 | CSB-22
2030 | | | | | | | | | 22 _{-0.033} | 25 ^{+0.021} | 25 ^{+0.075} _{+0.035} | 22.050
22.131 | 1.445
1.475 | | 0.6 | 0.4 | | CSB-22
2215 | | CSB-22
2225 | | | | | | | | | | 25 _{-0.033} | 28 ^{+0.021} | 28 ^{+0.075} _{+0.035} | 25.050
25.131 | | | | | | CSB-22
2515 | CSB-22
2520 | CSB-22
2525 | CSB-22
2530 | | | | | | | | | 28 _{-0.033} | 32 ^{+0.025} | 32 ^{+0.085} _{+0.045} | 28.060
28.155 | | 6 | | | | | CSB-22
2820 | | CSB-22
2830 | | | | | | | | | 30 _{-0.033} | 34 ^{+0.025} | 34 ^{+0.085} _{+0.045} | 30.060
30.155 | 1.935 | | 1.2 | 0.4 | | | CSB-22
3020 | CSB-22
3025 | CSB-22
3030 | | CSB-22
3040 | | | | | | | 35 _{-0.039} | 39 ^{+0.025} | 39 ^{+0.085} _{+0.045} | 35.060
35.155 | 1.970 | | 1.2 | 0.4 | | | CSB-22
3520 | | CSB-22
3530 | CSB-22
3535 | CSB-22
3540 | | | | | | | 40 _{-0.039} | 44 ^{+0.025} | 44 ^{+0.085} _{+0.045} | 40.060
40.155 | | | | | | | CSB-22
4020 | | CSB-22
4030 | | CSB-22
4040 | | CSB-22
4050 | | | | | 45 _{-0.039} | 50 ^{+0.025} | 50 ^{+0.085} _{+0.045} | 45.080
45.195 | | | | | | | CSB-22
4520 | | CSB-22
4530 | | CSB-22
4540 | CSB-22
4545 | CSB-22
4550 | | | | | 50 _{-0.039} | | 55 ^{+0.100} _{+0.055} | 50.080
50.200 | 2.415 | 8 | 1.0 | 0.6 | | | | | CSB-22
5030 | | CSB-22
5040 | | CSB-22
5050 | CSB-22
5060 | | | | 55 _{-0.046} | 60 ^{+0.030} | 60 ^{+0.100} _{+0.055} | 55.080
55.200 | 2.460 | | 1.8 | 0.6 | 0.6 | 0.6 | | | | | CSB-22
5530 | | CSB-22
5540 | | CSB-22
5550 | CSB-22
5560 | | 60 _{-0.046} | 65 ^{+0.030} | 65 ^{+0.100} _{+0.055} | 60.080
60.200 | | | | | | | | | CSB-22
6030 | | CSB-22
6040 | | CSB-22
6050 | CSB-22
6060 | | | # CSB-22 Metric cylindrical bushes | | | | | | | | | | | | | | | | UI | nit:mm | | |-----------------------|-----------------------|---|--------------------|----------------|------|-----|----------------|----------------|-----------------|-----------------|-----------------|--------------------|-----------------|------------------|------------------|------------------|------------------| | Axle | Housing | OD | ID after | Wall
thick- | Oil | f, | f ₂ | | | | | L _{-0.40} | | | | | | | h8 | H7 | tolerance | fixed | ness | hole | 1 | 2 | 40 | 50 | 60 | 80 | 90 | 95 | 100 | 110 | 120 | | | 65 _{-0.046} | 70 +0.030 | 70 ^{+0.100} _{+0.055} | 65.080
65.200 | | | | | CSB-22
6540 | | CSB-22
6560 | | | | | | | | | 70 -0.046 | 75 ^{+0.030} | 75 ^{+0.100} _{+0.055} | 70.080
70.200 | 2.415
2.460 | 8 | 1.8 | 0.6 | CSB-22
7040 | CSB-22
7050 | CSB-22 | CSB-22
7080 | | | | | | | | 75 _{-0.046} | 80 +0.030 | 80 ^{+0.100} _{+0.055} | 75.080
75.200 | | | | | CSB-22
7540 | | CSB-22
7560 | CSB-22
7580 | | | | | | | | 80 -0.046 | 85 ^{+0.035} | 85 ^{+0.120} _{+0.070} | 80.100
80.265 | | | | | CSB-22
8040 | | CSB-22
8060 | CSB-22
8080 | | | | | | | | 85 -0.054 | 90 +0.035 | 90 +0.120 +0.070 | 85.100
85.265 | | | | | CSB-22
8540 | | CSB-22
8560 | CSB-22
8580 | | | | | | | | 90 -0.054 | 95 ^{+0.035} | 95 ^{+0.120} _{+0.070} | 90.100
90.265 | | | | | CSB-22
9040 | | CSB-22
9060 | CSB-22
9080 | CSB-22
9090 | | | | | | | 100 _{-0.054} | 105 ^{+0.035} | 105+0.120 | 100.100
100.265 | | | 1.8 | 0.6 | | CSB-22
10050 | | CSB-22
10080 | | CSB-22
10095 | | | | | | 105 _{-0.054} | 110 ^{+0.035} | 110 ^{+0.120} _{+0.070} | 105.110
105.265 | | | | | | | CSB-22
10560 | CSB-22
10580 | | CSB-22
10595 | | CSB-22
105110 | | | | 110 _{-0.054} | 115 ^{+0.035} | 115 ^{+0.120} _{+0.070} | 110.110
110.265 | | 9.5 | | | | | CSB-22
11060 | CSB-22
11080 | | CSB-22
11095 | | CSB-22
110110 | | | | 120 _{-0.054} | 125 ^{+0.040} | 125+0.170 | 120.110
120.270 | | | | | | | CSB-22
12060 | CSB-22
12080 | | | | CSB-22
120110 | | | | 125 _{-0.063} | 130 ^{+0.040} | 130+0.170 | 125.110
125.270 | | | | | | | CSB-22
12560 | | | | | CSB-22
125110 | | | | 130 _{-0.063} | 135 ^{+0.040} | 135 ^{+0.170} _{+0.100} | 130.110
130.270 | | | | | | CSB-22
13050 | CSB-22
13060 | CSB-22
13080 | | | CSB-22
130100 | | | | | 140 _{-0.063} | 145 ^{+0.040} | 145+0.170 | 140.110
140.270 | | | | | | CSB-22
14050 | CSB-22
14060 | | | | CSB-22
140100 | | | | | 150 _{-0.063} | 155 ^{+0.040} | 155 ^{+0.170} _{+0.100} | 150.110
150.270 | 2.385 | | | | | CSB-22
15050 | CSB-22
15060 | CSB-22
15080 | | | CSB-22
150100 | | | | | 160 _{-0.063} | 165 ^{+0.040} | 165 ^{+0.170} _{+0.100} | 160.110
160.270 | 2.450 | | | | | CSB-22
16050 | CSB-22
16060 | CSB-22
16080 | | | CSB-22
160100 | | | | | 170 _{-0.063}
 175 ^{+0.040} | 175 ^{+0.170} _{+0.100} | 170.110
170.270 | | | | | | CSB-22
17050 | | CSB-22
17080 | | | CSB-22
170100 | | | | | 180 _{-0.063} | 185 ^{+0.046} | 185 ^{+0.210} _{+0.130} | 180.110
180.276 | | 9.5 | 1.8 | 0.6 | | CSB-22
18050 | CSB-22
18060 | CSB-22
18080 | | | CSB-22
180100 | | | | | | 195 ^{+0.046} | | 190.110
190.276 | | | | | | CSB-22
19050 | CSB-22
19060 | CSB-22
19080 | | | CSB-22
190100 | | CSB-22
190120 | | | 200 _{-0.072} | 205 ^{+0.046} | 205+0.210 | 200.110
200.276 | | | | | | CSB-22
20050 | CSB-22
20060 | | | | CSB-22
200100 | | CSB-22
200120 | | | 220 _{-0.072} | 225 ^{+0.046} | 225+0.210 | 220.110
220.276 | | | | | | CSB-22
22050 | CSB-22
22060 | | | | CSB-22
220100 | | CSB-22
220120 | | | | 245 ^{+0.046} | | 240.110
240.276 | | | | | | CSB-22
24050 | CSB-22
24060 | CSB-22 | | | CSB-22
240100 | | CSB-22
240120 | | | | 255 ^{+0.052} | | 250.110
250.282 | | 0 | | | | | CSB-22
25060 | | | | CSB-22
250100 | | CSB-22
250120 | | | | 265 ^{+0.052} | | 260.110
260.282 | | 9.5 | | | | | CSB-22
26060 | CSB-22 | | | CSB-22
260100 | | CSB-22
260120 | | | | 285 ^{+0.052} | | 280.110
280.282 | | | | | | | | | CSB-22 | | | CSB-22
280100 | | CSB-22
280120 | | | | 305 ^{+0.260} _{+0.170} | 300.110
300.282 | | | | | | CSB-22 | CSB-22
30060 | CSB-22 | | | CSB-22
300100 | | CSB-22
300120 | | ### **CSB-22** Metric thrust washer and strip #### **Metric thrust washer** Unit:mm | Anda | Designation | | Washer din | nension | | Ins | tallation siz | ze | |------|-------------|---------|------------|---------|----------|-------------------|---------------|----------------------| | Axle | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t ±0.2 | D ₁ +0.12 | | 8 | CSB-22WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-22WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-22WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-22WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-22WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-22WC20 | 20 | 36 | | 28 | | | 36 | | 20 | CSB-22WC22 | 22 | 38 | 1.5 | 30 | 3 | 1 | 38 | | 22 | CSB-22WC24 | 24 | 42 | | 33 | 3 | | 42 | | 24 | CSB-22WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-22WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-22WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-22WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-22WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-22WC48 | 48 | 18 74 | | 61 | | | 74 | | 50 | CSB-22WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-22WC62 | 62 | 90 | | 76 | | | 90 | ### **Metric standard strip** | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-22SP | 500 | 150 | 1.0 | | CSB-22SP | 500 | 150 | 1.5 | | CSB-22SP | 500 | 150 | 2.0 | | CSB-22SP | 500 | 150 | 2.5 | # CSB-80 Metric cylindrical bushes | | | | | | | | | | | | | | | | | <u> </u> | 111.1111111 | |----------------------|----------------------|--|------------------|----------------|------|-----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | | Housing | | ID after | Wall
thick- | Oil | f, | f ₂ | | | | | L . | 0.40 | | | | | | h8 | | tolerance | | ness | hole | ' | 2 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | | 10 _{-0.022} | 12 ^{+0.018} | 12 ^{+0.065} _{+0.030} | 10.040
10.108 | | | | | CSB-80
1010 | CSB-80
1015 | CSB-80
1020 | | | | | | | | | | 14 ^{+0.018} | | 12.040
12.108 | | | | | CSB-80
1210 | CSB-80
1215 | CSB-80
1220 | | | | | | | | | | 16 ^{+0.018} | | | 0.955 | | 0.6 | 0.0 | | CSB-80
1415 | CSB-80
1420 | | | | | | | | | 15 _{-0.027} | 17 ^{+0.018} | 17 ^{+0.065} _{+0.030} | 15.040
15.108 | 0.980 | 4 | 0.6 | 0.3 | | CSB-80
1515 | CSB-80
1520 | CSB-80
1525 | | | | | | | | | 18 ^{+0.018} | | | | 4 | | | | CSB-80
1615 | CSB-80
1620 | CSB-80
1625 | | | | | | | | | 20 ^{+0.021} | | | | | | | CSB-80
1815 | CSB-80
1820 | CSB-80
1825 | | | | | | | | | | 23 ^{+0.021} | | | | | | | | CSB-80
2015 | CSB-80
2020 | CSB-80
2025 | CSB-80
2030 | | | | | | | | 25 ^{+0.021} | | | 1.445
1.475 | | 0.6 | 0.4 | | CSB-80
2215 | | CSB-80
2225 | | | | | | | | | 28 ^{+0.021} | | | | | _ | | | CSB-80
2515 | CSB-80
2520 | CSB-80
2525 | CSB-80
2530 | | | | | | | 28 _{-0.033} | 32 ^{+0.025} | 32 ^{+0.085} _{+0.045} | 28.060
28.155 | | 6 | | | | | CSB-80
2820 | | CSB-80
2830 | | | | | | | 30 _{-0.033} | 34 ^{+0.025} | 34 ^{+0.085} _{+0.045} | 30.060
30.155 | 1.935 | | 1.2 | 0.4 | | | CSB-80
3020 | CSB-80
3025 | CSB-80
3030 | | CSB-80
3040 | | | | | 35 _{-0.039} | 39 ^{+0.025} | 39 ^{+0.085} _{+0.045} | 35.060
35.155 | 1.970 | | 1.2 | 0.4 | | | CSB-80
3520 | | CSB-80
3530 | CSB-80
3535 | CSB-80
3540 | | | | | 40 _{-0.039} | 44 ^{+0.025} | 44 ^{+0.085}
+0.045 | 40.060
40.155 | | | | | | | CSB-80
4020 | | CSB-80
4030 | | CSB-80
4040 | | CSB-80
4050 | | | | 50 ^{+0.025} | | | | | | | | | CSB-80
4520 | | CSB-80
4530 | | CSB-80
4540 | CSB-80
4545 | CSB-80
4550 | | | | 55 ^{+0.030} | | | 2.415 | 8 | 1.8 | 0.6 | | | | | CSB-80
5030 | | CSB-80
5040 | | CSB-80
5050 | CSB-80
5060 | | 55 _{-0.046} | 60 ^{+0.030} | 60 ^{+0.100} _{+0.055} | 55.080
55.200 | 2.460 | | 1.8 | 0.6 | | | | | CSB-80
5530 | | CSB-80
5540 | | CSB-80
5550 | CSB-80
5560 | | 60 _{-0.046} | 65 ^{+0.030} | 65 ^{+0.100} _{+0.055} | 60.080
60.200 | | | | | | | | | CSB-80
6030 | | CSB-80
6040 | | CSB-80
6050 | CSB-80
6060 | # CSB-80 Metric cylindrical bushes | | | | | | | | | | | | | | | | UI | ııt:mm | |-----------------------|-----------------------|---|--------------------|------------------------|-------------|----------------|----------------|--------------------|-----------------|-----------------|-----------------|----------------|-----------------|------------------|------------------|------------------| | Axle
h8 | Housing
H7 | OD
tolerance | ID after fixed | Wall
thick-
ness | Oil
hole | f ₁ | f ₂ | L _{-0.40} | | | | | | | | | | | | | | | | | | 40 | 50 | 60 | 80 | 90 | 95 | 100 | 110 | 120 | | 65 _{-0.046} | 70 +0.030 | 70 ^{+0.100} _{+0.055} | 65.080
65.200 | 2.415
2.460 | 8 | 1.8 | 0.6 | CSB-80
6540 | | CSB-80
6560 | | | | | | | | 70 -0.046 | 75 +0.030 | 75 ^{+0.100} _{+0.055} | 70.080
70.200 | | | | | CSB-80
7040 | CSB-80
7050 | | CSB-80
7080 | | | | | | | 75 _{-0.046} | 80 +0.030 | 80 ^{+0.100} _{+0.055} | 75.080
75.200 | | | | | CSB-80
7540 | | CSB-80
7560 | CSB-80
7580 | | | | | | | 80 -0.046 | 85 ^{+0.035} | 85 ^{+0.120} _{+0.070} | 80.100
80.265 | 2.385
2.450 | 9.5 | 1.8 | 0.6 | CSB-80
8040 | | CSB-80
8060 | CSB-80
8080 | | | | | | | 85 _{-0.054} | 90 +0.035 | 90 +0.120 +0.070 | 85.100
85.265 | | | | | CSB-80
8540 | | CSB-80
8560 | CSB-80
8580 | | | | | | | 90 -0.054 | 95 ^{+0.035} | 95 ^{+0.120} _{+0.070} | 90.100
90.265 | | | | | CSB-80
9040 | | CSB-80
9060 | CSB-80
9080 | CSB-80
9090 | | | | | | 100 _{-0.054} | 105 ^{+0.035} | 105+0.120 | 100.100
100.265 | | | | | | CSB-80
10050 | | CSB-80
10080 | | CSB-80
10095 | | | | | 105 _{-0.054} | 110 +0.035 | 110 ^{+0.120} _{+0.070} | 105.110
105.265 | | | | | | | CSB-80
10560 | CSB-80
10580 | | CSB-80
10595 | | CSB-80
105110 | | | 110 -0.054 | 115 ^{+0.035} | 115 ^{+0.120} _{+0.070} | 110.110
110.265 | | | | | | | CSB-80
11060 | CSB-80
11080 | | CSB-80
11095 | | CSB-80
110110 | | | | | 125+0.170 | 120.110
120.270 | | | 1.8 | 0.6 | | | CSB-80
12060 | CSB-80
12080 | | | | CSB-80
120110 | | | 125 _{-0.063} | 130 ^{+0.040} | 130+0.170 | 125.110
125.270 | | | | | | | CSB-80
12560 | | | | | CSB-80
125110 | | | 130 _{-0.063} | 135 ^{+0.040} | 135 ^{+0.170} _{+0.100} | 130.110
130.270 | | | | | | CSB-80
13050 | CSB-80
13060 | | | | CSB-80
130100 | | | | 140 _{-0.063} | 145 ^{+0.040} | 145 ^{+0.170} _{+0.100} | 140.110
140.270 | | | | | | CSB-80
14050 | CSB-80
14060 | CSB-80
14080 | | | CSB-80
140100 | | | | 150 _{-0.063} | 155 ^{+0.040} | 155 ^{+0.170} _{+0.100} | 150.110
150.270 | | | | | | CSB-80
15050 | CSB-80
15060 | | | | CSB-80
150100 | | | | 160 _{-0.063} | 165 ^{+0.040} | 165 ^{+0.170} _{+0.100} | 160.110
160.270 | | | | | | CSB-80
16050 | CSB-80
16060 | CSB-80
16080 | | | CSB-80
160100 | | | | | | 175 ^{+0.170} _{+0.100} | 170.110
170.270 | | | | | | CSB-80
17050 | | CSB-80
17080 | | | CSB-80
170100 | | | | 180 _{-0.063} | 185 ^{+0.046} | 185 ^{+0.210} _{+0.130} | 180.110
180.276 | | | | | | CSB-80
18050 | CSB-80
18060 | CSB-80
18080 | | | CSB-80
180100 | | | | 190 _{-0.072} | 195 ^{+0.046} | 195 ^{+0.210} _{+0.130} | 190.110
190.276 | | | | | | | CSB-80
19060 | CSB-80 | | | CSB-80
190100 | | CSB-80
190120 | | 200 _{-0.072} | 205 ^{+0.046} | 205+0.210 | 200.110
200.276 | | | | | | | CSB-80 | CSB-80
20080 | | | CSB-80
200100 | | CSB-80
200120 | | 220 _{-0.072} | 225 ^{+0.046} | 225+0.210 | 220.110
220.276 | | 9.5 | | | | CSB-80
22050 | CSB-80
22060 | | | | CSB-80
220100 | | CSB-80
220120 | | | | 245 ^{+0.210} _{+0.130} | 240.110
240.276 | | | | | | | CSB-80 | CSB-80
24080 | | | CSB-80
240100 | | CSB-80
240120 | | | | 255 ^{+0.260} _{+0.170} | | | | | | | | CSB-80
25060 | CSB-80 | | | CSB-80
250100 | | CSB-80
250120 | | | | 265 ^{+0.260} _{+0.170} | | | | | | | | CSB-80 | CSB-80
26080 | | | CSB-80
260100 | | CSB-80
260120 | | | | 285 ^{+0.260} _{+0.170} | 280.110
280.282 | | | | | | | CSB-80 | CSB-80
28080 | | | CSB-80
280100 | | CSB-80
280120 | | | | 305 ^{+0.260}
_{+0.170} | | | | | | | CSB-80 | | CSB-80 | | | CSB-80
300100 | | CSB-80
300120 | ### **CSB-80** Metric thrust washer and strip ### **Metric thrust washer** Unit:mm | A1 - | Decignation | | Washer din | nension | | Ins | tallation siz | ze | |------|-------------|---------|------------|---------|----------|-------------------|---------------|----------------------| | Axle | Designation | d +0.25 | D -0.25 | T -0.05 | M ±0.125 | h ^{+0.4} | t ±0.2 | D ₁ +0.12 | | 8 | CSB-80WC10 | 10 | 20 | | 15 | 1.5 | | 20 | | 10 | CSB-80WC12 | 12 | 24 | | 18 | 1.5 | | 24 | | 12 | CSB-80WC14 | 14 | 26 | | 20 | | | 26 | | 14 | CSB-80WC16 | 16 | 30 | | 23 | 2 | | 30 | | 16 | CSB-80WC18 | 18 | 32 | | 25 | | | 32 | | 18 | CSB-80WC20 | 20 | 36 | | 28 | | | 36 | | 20 | CSB-80WC22 | 22 | 38 | 1.5 | 30 | | 1 | 38 | | 22 | CSB-80WC24 | 24 | 42 | | 33 | 3 | | 42 | | 24 | CSB-80WC26 | 26 | 44 | | 35 | | | 44 | | 26 | CSB-80WC28 | 28 | 48 | | 38 | | | 48 | | 30 | CSB-80WC32 | 32 | 54 | | 43 | | | 54 | | 36 | CSB-80WC38 | 38 | 62 | | 50 | | | 62 | | 40 | CSB-80WC42 | 42 | 66 | | 54 | 4 | | 66 | | 46 | CSB-80WC48 | 48 | 74 | | 61 | | | 74 | | 50 | CSB-80WC52 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | 60 | CSB-80WC62 | 62 | 90 | | 76 | | | 90 | ### Metric standard strip #### Unit:mm | Туре | Length±1 | Width±1 | Thickness -0.05 | |----------|----------|---------|-----------------| | CSB-80SP | 500 | 150 | 1.0 | | CSB-80SP | 500 | 150 | 1.5 | | CSB-80SP | 500 | 150 | 2.0 | | CSB-80SP | 500 | 150 | 2.5 | 72 ## JDB650 Metric cylindrical bushes | | | m | |--|--|---| | | | | | | | | | d | F7 | Dr | m6 | | | | | | | L-0 |).10
).30 | | | | | | | |----|--------|----|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----| | | | | | 8 | 10 | 12 | 15 | 16 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | | 8 | +0.028 | 12 | | JDB650
081208 | | JDB650
081212 | | | | | | | | | | | | | 10 | +0.013 | 14 | | JDB650
101408 | | JDB650
101412 | | | JDB650
101420 | | | | | | | | | | 12 | | 18 | | | | JDB650
121812 | | | | JDB650
121825 | JDB650
121830 | | | | | | | | 13 | | 19 | | | JDB650
131910 | | | JDB650
131916 | | | | | | | | | | | 14 | +0.034 | 20 | | | | JDB650
142012 | | | JDB650
142020 | JDB650
142025 | JDB650
142030 | | | | | | | | 15 | +0.016 | 21 | +0.021 | | | JDB650
152112 | | | | JDB650
152125 | JDB650
152130 | | | | | | | | 16 | | 22 | +0.008 | | JDB650
162210 | JDB650
162212 | | JDB650
162216 | | | JDB650
162230 | | JDB650
162240 | | | | | | 18 | | 24 | | | | JDB650
182412 | | JDB650
182416 | | | JDB650
182430 | JDB650
182435 | JDB650
182440 | | | | | | 20 | | 28 | | | | JDB650
202812 | | | | JDB650
202825 | JDB650
202830 | | JDB650
202840 | JDB650
202850 | | | | | 22 | +0.041 | 32 | | | | JDB650
223212 | JDB650
223215 | | JDB650
223220 | JDB650
223225 | | | | | | | | | 25 | +0.020 | 33 | | | | | JDB650
253315 | JDB650
253316 | JDB650
253320 | JDB650
253325 | JDB650
253330 | JDB650
253335 | | JDB650
253350 | JDB650
253360 | | | | 30 | | 38 | +0.025 | | | | JDB650
303815 | | JDB650
303820 | JDB650
303825 | JDB650
303830 | | JDB650
303840 | JDB650
303850 | JDB650
303860 | | | | 35 | | 45 | | | | | | | JDB650
354520 | JDB650
354525 | JDB650
354530 | | JDB650
354540 | JDB650
354550 | JDB650
354560 | | | | 40 | +0.050 | 50 | | | | | | | JDB650
405020 | JDB650
405025 | JDB650
405030 | | JDB650
405040 | JDB650
405050 | JDB650
405060 | JDB650
405070 | | | 45 | +0.025 | 55 | +0.030 | | | | | | | | JDB650
455530 | | JDB650
455540 | JDB650
455550 | JDB650
455560 | | | | 50 | | 60 | +0.011 | | | | | | | | JDB650
506030 | | JDB650
506040 | | JDB650
506060 | JDB650
506070 | | # JDB 650 Metric cylindrical bushes | | | | | | | | | | | | | | | | Jnit:mm | |-----|------------------|-----|------------------|-------------------|------------------|-------------------|-------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | ID | F7 | OD | m6 | | | | | | |).10
).30 | | | | | | | | | | | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 100 | 120 | 130 | 140 | 150 | | 50 | +0.050 | 62 | | JDB650
506230 | JDB650
506235 | JDB650
506240 | JDB650
506250 | JDB650
506260 | JDB650
506270 | | | | | | | | 50 | +0.025 | 65 | | JDB650
506530 | | JDB650
506540 | JDB650
506550 | JDB650
506560 | JDB650
506570 | JDB650
506580 | JDB650
5065100 | | | | | | 55 | | 70 | | | | JDB650
557040 | JDB650
557050 | JDB650
557060 | JDB650
557070 | | | | | | | | 60 | | 74 | +0.030
+0.011 | JDB650
607430 | JDB650
607435 | JDB650
607440 | JDB650
607450 | JDB650
607460 | JDB650
607470 | JDB650
607480 | | | | | | | 60 | | 75 | | JDB650
607530 | JDB650
607535 | JDB650
607540 | JDB650
607550 | JDB650
607560 | JDB650
607570 | JDB650
607580 | JDB650
6075100 | | | | | | 63 | | 75 | | | | | | JDB650
637560 | JDB650
637570 | JDB650
637580 | | | | | | | 65 | | 80 | | | | | JDB650
658050 | JDB650
658060 | JDB650
658070 | JDB650
658080 | | | | | | | 70 | +0.060 | 85 | | | JDB650
708535 | JDB650
708540 | JDB650
708550 | JDB650
708560 | JDB650
708570 | JDB650
708580 | JDB650
7085100 | | | | | | 70 | +0.030 | 90 | | | | | JDB650
709050 | JDB650
709060 | JDB650
709070 | JDB650
709080 | | | | | | | 75 | | 90 | | | | | | JDB650
759060 | JDB650
759070 | JDB650
759080 | JDB650
7590100 | | | | | | 75 | | 95 | +0.035 | | | | | JDB650
759560 | JDB650
759570 | JDB650
759580 | JDB650
7595100 | | | | | | 80 | | 96 | +0.013 | | | JDB650
809640 | JDB650
809650 | JDB650
809660 | JDB650
809670 | JDB650
809680 | JDB650
8096100 | JDB650
8096120 | | | | | 80 | | 100 | | | | JDB650
8010040 | JDB650
8010050 | JDB650
8010060 | JDB650
8010070 | JDB650
8010080 | JDB650
80100100 | JDB650
80100120 | | JDB650
80100140 | | | 90 | | 110 | | JDB650
9011030 | | | JDB650
9011050 | JDB650
9011060 | JDB650
9011070 | JDB650
9011080 | JDB650
90110100 | JDB650
90110120 | | | | | 100 | +0.071 | 120 | | | | | | JDB650
10012060 | JDB650
10012070 | JDB650
10012080 | JDB650
100120100 | JDB650
100120120 | | JDB650
100120140 | | | 110 | +0.036 | 130 | | | | | | | | JDB650
11013080 | JDB650
110130100 | JDB650
110130120 | | | | | 120 | | 140 | | | | | | | | JDB650
12014080 | JDB650
120140100 | JDB650
120140120 | | JDB650
120140140 | | | 125 | | 145 | | | | | | | | | JDB650
125145100 | JDB650
125145120 | | | | | 130 | | 150 | +0.040
+0.015 | | | | | | | | JDB650
130150100 | | JDB650
130150130 | | | | 140 | +0.083
+0.043 | 160 | | | | | | | | | JDB650
140160100 | | | JDB650
140160140 | | | 150 | | 170 | | | | | | | | | JDB650
150170100 | | | | JDB650
150170150 | | 160 | | 180 | | | | | | | | | JDB650
160180100 | | | | JDB650
160180150 | ### JFB650 Metric flange bushes | Jn | | | |----|--|--| | | | | | | | | | | | | | d | D | ID |)E7 | 0 | Dr6 | F | ℓ_1 | | | | | |).10
).30 | | | | | |------|-----|------|------------------|-----|------------------|-----|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|------------------| | | | | | | | | -0.10 | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 80 | 100 | | 10 | 14 | 10 | +0.040
+0.025 | 14 | +0.034 | 22 | 2 | JFB650
1015 | JFB650
1020 | | | | | | | | | | 12 | 18 | 12 | | 18 | +0.023 | 25 | | JFB650
1215 | JFB650
1220 | | | | | | | | | | 13 | 19 | 13 | | 19 | | 26 | | JFB650
1315 | JFB650
1320 | | | | | | | | | | 14 | 20 | 14 | +0.050
+0.032 | 20 | | 27 | 3 | JFB650
1415 | JFB650
1420 | | | | | | | | | | 15 | 21 | 15 | | 21 | +0.041
+0.028 | 28 | | JFB650
1515 | JFB650
1520 | JFB650
1525 | JFB650
1530 | | | | | | | | 16 | 22 | 16 | | 22 | | 29 | | JFB650
1615 | JFB650
1620 | JFB650
1625 | JFB650
1630 | | | | | | | | 20 | 30 | 20 | | 30 | | 40 | | JFB650
2015 | JFB650
2020 | JFB650
2025 | JFB650
2030 | | JFB650
2040 | | | | | | 25 | 35 | 25 | +0.061
+0.040 | 35 | | 45 | | JFB650
2515 | JFB650
2520 | JFB650
2525 | JFB650
2530 | | JFB650
2540 | | | | | | 30 | 40 | 30 | | 40 | | 50 | | | JFB650
3020 | JFB650
3025 | JFB650
3030 | JFB650
3035 | JFB650
3040 | JFB650
3050 | | | | | 31.5 | 40 | 31.5 | | 40 | +0.050
+0.034 | 50 | | | JFB650
3120 | | | JFB650
3135 | | | | | | | 35 | 45 | 35 | | 45 | | 60 | 5 | | JFB650
3520 | | JFB650
3530 | | JFB650
3540 | JFB650
3550 | | | | | 40 | 50 | 40 | +0.075
+0.050 | 50 | | 65 | | | JFB650
4020 | | JFB650
4030 | | JFB650
4040 | JFB650
4050 | | | | | 45 | 55 | 45 | | 55 | | 70 | | | | | JFB650
4530 | | JFB650
4540 | JFB650
4550 | JFB650
4560 | | | | 50 | 60 | 50 | | 60 | +0.060
+0.041 | 75 | | | | | JFB650
5030 | | JFB650
5040 | JFB650
5050 | JFB650
5060 | | | | 55 | 65 | 55 | | 65 | | 80 | | | | | | | JFB650
5540 | | JFB650
5560 | | | | 60 | 75 | 60 | | 75 | +0.062 | 90 | | | | | | | JFB650
6040 | JFB650
6050 | | JFB650
6080 | | | 63 | 75 | 63 | +0.090 | 75 | +0.043 | 85 | 7.5 | | | | | | | | | JFB650
6367 | | | 70 | 85 | 70 | +0.060 | 85 | | 105 | 7.5 | | | | | | | JFB650
7050 | | JFB650
7080 | | | 75 | 90 | 75 | | 90 | +0.073
+0.051 | 110 | | | | | | | | | JFB650
7560 | | | | 80 | 100 | 80 | | 100 | | 120 | | | |
| | | | | JFB650
8060 | JFB650
8080 | JFB650
80100 | | 90 | 110 | 90 | | 110 | +0.076 | 130 | 10 | | | | | | | | JFB650
9060 | JFB650
9080 | | | 100 | 120 | 100 | +0.107
+0.072 | 120 | +0.054 | 150 | 10 | | | | | | | | | JFB650
10080 | JFB650
100100 | | 120 | 140 | 120 | | 140 | +0.088
+0.063 | 170 | | | | | | | | | | JFB650
12080 | JFB650
120100 | ## JTW650 Metric thrust washer Material 650# + Graphite | Stanard No. | d | D | T ⁰ | | В | olt | | |-------------|-------|-----|----------------|----------------|------|------|-----| | Stanard No. | d | D | -0.1 | D ₁ | Q'ty | size | d1 | | JTW650 -10 | 10.2 | 30 | | | | | | | JTW650 -12 | 12.2 | | | | | | | | JTW650 -13 | 13.2 | 40 | | 28 | | | | | JTW650 -14 | 14.2 | | 3 | | 2 | М 3 | 3.5 | | JTW650 -15 | 15.2 | | 3 | 0.5 | | | | | JTW650 -16 | 16.2 | | | 35 | | | | | JTW650 -16N | 10.2 | 50 | | | | | | | JTW650 -18 | 18.2 | 30 | | 35 | 2 | М 3 | 3.5 | | JTW650 -20 | 20.0 | | | 35 | 2 | M 5 | 6 | | JTW650 -20N | 20.2 | | | | | | | | JTW650 -25 | 25.0 | 55 | | 40 | 2 | M 5 | 6 | | JTW650 -25N | 25.2 | 55 | 5 | | | | | | JTW650 -30 | 30.2 | 60 | | 45 | | ME | 6 | | JTW650 -35 | 35.2 | 70 | | 50 | 9 | M 5 | 6 | | JTW650 -40 | 40.2 | 80 | 7 | 60 | 2 | | | | JTW650 -45 | 45.3 | 90 | 7 | 67.5 | | Me | 7 | | JTW650 -50 | 50.3 | 100 | | 75 | | M 6 | 7 | | JTW650 -55 | 55.3 | 110 | | 85 | | | | | JTW650 -60 | 60.3 | 120 | 8 | 90 | | | | | JTW650 -65 | 65.3 | 125 | | 95 | | | | | JTW650 -70 | 70.3 | 130 | | 100 | 4 | M 8 | 9 | | JTW650 -75 | 75.3 | 140 | | 110 | | | | | JTW650 -80 | 80.3 | 150 | 10 | 120 | | | | | JTW650 -90 | 90.5 | 170 | 10 | | | | | | JTW650 -100 | 100.5 | 190 | | 160 | | M 10 | 11 | | JTW650 -120 | 120.5 | 200 | | 175 | | | | ## JSP650 Wear plate | Standard No. | W | L | А | В | С | D | Е | Flat Head
Screw | No.of Holes | | | | | | | | | | | | | | |---------------|----|-----|------|-----|-----|-----|-----|--------------------|-------------|----|----|----|-----|---|----|----|----|--|--|--|-------|---| | JSP650 -1875 | | 75 | 15 | 45 | JSP650 -18100 | 18 | 100 | | 60 | JSP650 -18125 | 10 | 125 | 25 | 75 | JSP650 -18150 | | 150 | | 100 | | | | M 6 | 2 | | | | | | | | | | | | | | | JSP650 -2875 | | 75 | 15 | 45 | | | | IVI O | 2 | | | | | | | | | | | | | | | JSP650 -28100 | 28 | 100 | | 50 | JSP650 -28125 | 20 | 125 | 25 | 75 | JSP650 -28150 | | 150 | | 100 | JSP650 -35100 | | 100 | | 60 | JSP650 -35150 | | 150 | | 55 | 55 | | | | 3 | | | | | | | | | | | | | | | JSP650 -35200 | 35 | 200 | 20 | 55 | 50 | 55 | | MO | 4 | | | | | | | | | | | | | | | JSP650 -35250 | 35 | 250 | 20 | 70 | 70 | 70 | | M 8 | 4 | | | | | | | | | | | | | | | JSP650 -35300 | 38 | 300 | | 65 | 65 | 65 | 65 | | 5 | | | | | | | | | | | | | | | JSP650 -35350 | | 350 | | 80 | 75 | 75 | 80 | | 5 | | | | | | | | | | | | | | | JSP650 -3875 | | 38 | 75 | 15 | 45 | | | | | | | | | | | | | | | | | | | JSP650 -38100 | | | 100 | | 50 | | | | | | | | | | | | | | | | | | | JSP650 -38125 | | 125 | 25 | 75 | JSP650 -38150 | | 150 | | 100 | | | | M 6 | 0 | | | | | | | | | | | | | | | JSP650 -4875 | | 40 | . 40 | 10 | 18 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | | | 75 | 15 | 45 | | | | IVI O | 2 | | JSP650 -48100 | | | | | | | | | | | | | 100 | | 50 | | | | | | | | | JSP650 -48125 | 48 | 125 | 25 | 75 | JSP650 -48150 | | 150 | | 100 | JSP650 -50100 | | 100 | | 60 | JSP650 -50150 | 50 | 50 | 50 | 50 | 150 | | 55 | 55 | | | | 3 | | | | | | | | | | | | JSP650 -50200 | | | | | 50 | 50 | 200 | | 55 | 50 | 55 | | | 4 | | | | | | | | | | JSP650 -50250 | | | | | | 250 | | 70 | 70 | 70 | | | 4 | | | | | | | | | | | JSP650 -50300 | | 300 | | 65 | 65 | 65 | 65 | | 5 | | | | | | | | | | | | | | | JSP650 -50400 | 75 | | | | 400 | 20 | 90 | 90 | 90 | 90 | MO | 5 | | | | | | | | | | | | JSP650 -75150 | | 150 | 20 | 110 | | | | M 8 | 4 | | | | | | | | | | | | | | | JSP650 -75200 | | 200 | | 80 | 80 | | | | 6 | | | | | | | | | | | | | | | JSP650 -75250 | | 250 | | 105 | 105 | | | | 6 | | | | | | | | | | | | | | | JSP650 -75300 | | 300 | | 85 | 90 | 85 | | | 8 | | | | | | | | | | | | | | | JSP650 -75400 | | 400 | | 120 | 120 | 120 | | | 8 | | | | | | | | | | | | | | | JSP650 -75500 | | 500 | | 115 | 115 | 115 | 115 | | 10 | | | | | | | | | | | | | | Material 650# + Graphite ## JSL650 Wear plate W(20) | | | | | | | | | | OTHE:TH | | | | |---------------|----|-----|----|----|----|------|-------|------|---------|--|--|--| | Stanard No. | W | L | | | Е | Bolt | | | Sketch | | | | | Stanlard No. | VV | | а | b | С | d | Size | Q'ty | OREIGH | | | | | JSL650-20×100 | | 100 | 60 | | | | | 2 | | | | | | JSL650-20×150 | 20 | 150 | 55 | 55 | | | M8 | 3 | A | | | | | JSL650-20×200 | | 200 | 55 | 50 | 55 | | | 4 | | | | | | JSL650-30×100 | 30 | 100 | 60 | | | | | 2 | | | | | | JSL650-30×150 | | 150 | 55 | 55 | | | | 3 | В | | | | | JSL650-30×200 | 30 | 200 | 55 | 50 | 55 | | | 4 | | | | | | JSL650-30×250 | | 250 | 70 | 70 | 70 | | M10 | 4 | | | | | | JSL650-45×200 | | 200 | 55 | 50 | 55 | | IVITO | 4 | | | | | | JSL650-45×250 | 45 | 250 | 70 | 70 | 70 | | | 4 | С | | | | | JSL650-45×300 | | 300 | 65 | 65 | 65 | 65 | | 5 | | | | | | JSL650-45×350 | | 350 | 80 | 75 | 75 | 80 | | 5 | | | | | ### **GB250** Self-lubricating bearing | Item | Code | Specification | φD | Ф d | L | φЕ | Н | ℓ_1 | |------|-----------|-----------------|-----|------------|-----|-----|----|----------| | 1 | GB250-30 | 50 × 30 × 50 | 50 | 30 | 50 | 49 | 10 | | | 2 | GB250-40 | 60 × 40 × 60 | 60 | 40 | 60 | 59 | 10 | 5 | | 3 | GB250-50 | 70 × 50 × 75 | 70 | 50 | 75 | 69 | 15 | | | 4 | GB250-60 | 80 × 60 × 90 | 80 | 60 | 90 | 79 | 20 | | | 5 | GB250-80 | 100 × 80 × 120 | 100 | 80 | 120 | 99 | 25 | 10 | | 6 | GB250-100 | 120 × 100 × 150 | 120 | 100 | 150 | 119 | 25 | 10 | | 7 | GB250-120 | 140 × 120 × 180 | 140 | 120 | 180 | 139 | 25 | | Material 250# + Graphite ## **HGB250** Self-lubricating bearing | Item | Code | Specification | φЕ | φD | Ф d | Н | L | φС | φЕ | φG | K | |------|------------|-----------------|-----|-----|------------|----|-----|-----|----|------|------| | 1 | HGB250-30 | 90/50×30×50 | 90 | 50 | 30 | 20 | 50 | 70 | 11 | 17.5 | 10.8 | | 2 | HGB250-40 | 100/60×40×65 | 100 | 60 | 40 | 20 | 65 | 80 | 11 | 17.5 | 10.8 | | 3 | HGB250-50 | 125/75×50×80 | 125 | 75 | 50 | 20 | 80 | 100 | 11 | 17.5 | 10.8 | | 4 | HGB250-60 | 135/85×60×100 | 135 | 85 | 60 | 20 | 100 | 110 | 11 | 17.5 | 10.8 | | 5 | HGB250-80 | 170/110×80×130 | 170 | 110 | 80 | 25 | 130 | 140 | 14 | 20 | 13 | | 6 | HGB250-100 | 190/130×100×160 | 190 | 130 | 100 | 25 | 160 | 160 | 14 | 20 | 13 | ### CSB250 JESF wear plate Α | Standard No. | W | L | а | b | Sketch | |--------------|-----|-----|-----|-----|--------| | JESF-48×75 | | 75 | | 45 | | | JESF-48×100 | | 100 | | 50 | | | JESF-48×125 | 48 | 125 | _ | 75 | | | JESF-48×150 | | 150 | | 100 | | | JESF-48×200 | | 200 | | 150 | А | | JESF-75×75 | | 75 | | 25 | ^ | | JESF-75×100 | | 100 | | 50 | | | JESF-75×125 | 75 | 125 | _ | 75 | | | JESF-75×150 | 75 | 150 | | 100 | | | JESF-75×200 | | 200 | | 150 | | | JESF-75×250 | | 250 | | 200 | | | JESF-100×100 | | 100 | | 50 | | | JESF-100×125 | | 125 | | 75 | | | JESF-100×150 | 100 | 150 | 50 | 100 | | | JESF-100×200 | 100 | 200 | 30 | 150 | | | JESF-100×250 | | 250 | | 200 | | | JESF-100×300 | | 300 | | 200 | | | JESF-125×125 | | 125 | | 75 | В | | JESF-125×150 | | 150 | | 100 | | | JESF-125×200 | 125 | 200 | 50 | 150 | | | JESF-125×250 | | 250 | | 200 | | | JESF-125×300 | | 300 | | 200 | | | JESF-150×150 | | 150 | | 100 | | | JESF-150×200 | 150 | 200 | 100 | 150 | | | JESF-150×250 | | 250 | | 200 | | ## CSB250 JMWP wear plate | Standard No. | W | L | а | b | Sketch | |---------------|-----|-----|-----|-----|--------| | JMWP-28×75 | | 75 | | 45 | | | JMWP-28×100 | | 100 | | 50 | | | JMWP-28×125 | 28 | 125 | _ | 75 | | | JMWP-28×150 | | 150 | | 100 | | | JMWP-28×200 | | 200 | | 150 | | | JMWP-38×75 | | 75 | | 45 | | | JMWP-38×100 | | 100 | | 50 | | | JMWP-38×125 | 38 | 125 | _ | 75 | | | JMWP-38×150 | | 150 | | 100 | | | JMWP-38×200 | | 200 | | 150 | | | JMWP-48× 75 | | 75 | | 45 | | | JMWP-48× 100 | | 100 | | 50 | Α | | JMWP-48× 125 | 48 | 125 | _ | 75 | | | JMWP-48×150 | | 150 | | 100 | | | JMWP-48×200 | | 200 | | 150 | | | JMWP-58×75 | | 75 | | 45 | | | JMWP-58×100 | 58 | 100 | _ | 50 | | | JMWP-58×150 | | 150 | | 100 | | | JMWP-75×75 | | 75 | | 25 | | | JMWP-75×100 | | 100 | | 50 | | | JMWP-75×125 | 75 | 125 | _ | 75 | | | JMWP-75×150 | | 150 | | 100 | | | JMWP-75×200 | | 200 | | 150 | | | JMWP-100×100 | | 100 | | 50 | | | JMWP-100×125 | | 125 | | 75 | | | JMWP-100×150 | 100 | 150 | 50 | 100 | | | JMWP-100×200 | | 200 | | 150 | | | JMWP-100×250 | | 250 | | 200 | | | JMWP-125× 125 | | 125 | | 75 | | | JMWP-125× 150 | 125 | 150 | 50 | 100 | | | JMWP-125× 200 | 125 | 200 | 50 | 150 | Б | | JMWP-125× 250 | | 250 | | 200 | В | | JMWP-150× 150 | | 150 | | 100 | | | JMWP-150× 200 | 450 | 200 | 100 | 150 | | | JMWP-150× 250 | 150 | 250 | 100 | 200 | | | JMWP-150× 300 | | 300 | | 250 | | | JMWP-200× 200 | | 200 | | 150 | | | JMWP-200× 250 | 200 | 250 | 150 | 200 | | | JMWP-200× 300 | | 300 | | 250 | | # CSB-090(FB090) Metric cylindrical bushes | d | D | f, | f ₂ | | L -0.40 | | | | | | | | | | | | |-----|-----|-----|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|--------| | u | | '1 | 12 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
 10 | 12 | | | CSB-090
1010 | CSB-090
1015 | CSB-090
1020 | | | | | | | | | | | | 12 | 14 | | | CSB-090
1210 | CSB-090
1215 | CSB-090
1220 | | | | | | | | | | | | 14 | 16 | 0.5 | 0.3 | CSB-090
1410 | CSB-090
1415 | CSB-090
1420 | CSB-090
1425 | | | | | | | | | | | 15 | 17 | 0.5 | 0.5 | CSB-090
1510 | CSB-090
1515 | CSB-090
1520 | CSB-090
1525 | | | | | | | | | | | 16 | 18 | | | CSB-090
1610 | CSB-090
1615 | CSB-090
1620 | CSB-090
1625 | | | | | | | | | | | 18 | 20 | | | 1810 | 1815 | CSB-090
1820 | 1825 | | | | | | | | | | | 20 | 23 | | | CSB-090
2010 | CSB-090
2015 | CSB-090
2020 | CSB-090
2025 | | | | | | | | | | | 22 | 25 | | | CSB-090
2210 | CSB-090
2215 | CSB-090
2220 | CSB-090
2225 | CSB-090
2230 | | | | | | | | | | 24 | 27 | 0.8 | 0.4 | | CSB-090
2415 | CSB-090
2420 | CSB-090
2425 | CSB-090
2430 | | | | | | | | | | 25 | 28 | | | | CSB-090
2515 | CSB-090
2520 | CSB-090
2525 | CSB-090
2530 | | | | | | | | | | 28 | 31 | | | | CSB-090
2815 | CSB-090
2820 | CSB-090
2825 | CSB-090
2830 | | | | | | | | | | 30 | 34 | | | | CSB-090
3015 | CSB-090
3020 | CSB-090
3025 | CSB-090
3030 | CSB-090
3035 | CSB-090
3040 | | | | | | | | 32 | 36 | 1.0 | 0.6 | | CSB-090
3215 | CSB-090
3220 | CSB-090
3225 | CSB-090
3230 | CSB-090
3235 | CSB-090
3240 | | | | | | | | 35 | 39 | 1.0 | 0.0 | | CSB-090
3515 | CSB-090
3520 | CSB-090
3525 | CSB-090
3530 | CSB-090
3535 | CSB-090
3540 | | | | | | | | 40 | 44 | | | | | CSB-090
4020 | CSB-090
4025 | CSB-090
4030 | CSB-090
4035 | CSB-090
4040 | CSB-090
4050 | | | | | | | 45 | 50 | | | | | CSB-090
4520 | CSB-090
4525 | CSB-090
4530 | CSB-090
4535 | CSB-090
4540 | CSB-090
4550 | | | | | | | 50 | 55 | | | | | CSB-090
5020 | CSB-090
5025 | CSB-090
5030 | CSB-090
5035 | CSB-090
5040 | CSB-090
5050 | CSB-090
5060 | | | | | | 55 | 60 | | | | | CSB-090
5520 | 5525 | CSB-090
5530 | 5535 | 5540 | 5550 | 5560 | | | | | | 60 | 65 | 1.2 | 8.0 | | | | CSB-090
6025 | CSB-090
6030 | CSB-090
6035 | CSB-090
6040 | CSB-090
6050 | CSB-090
6060 | CSB-090
6070 | | | | | 65 | 70 | | | | | | | 6530 | 6535 | CSB-090
6540 | 6550 | 6560 | 6570 | | | | | 70 | 75 | | | | | | | 7030 | 7035 | 7040 | 7050 | 7060 | CSB-090
7070 | 7080 | | | | 75 | 80 | | | | | | | CSB-090
7530 | CSB-090
7535 | CSB-090
7540 | CSB-090
7550 | CSB-090
7560 | CSB-090
7570 | CSB-090
7580 | | | | 80 | 85 | | | | | | | 8030 | 8035 | 8040 | 8050 | 8060 | CSB-090
8070 | 8080 | | | | 85 | 90 | | | | | | | 8530 | CSB-090
8535 | 8540 | 8550 | 8560 | CSB-090
8570 | 8580 | 8590 | | | 90 | 95 | | | | | | | CSB-090
9030 | CSB-090
9035 | CSB-090
9040 | 9050 | 9060 | CSB-090
9070 | 9080 | 9090 | | | 95 | 100 | 1.4 | 1.4 0.8 | | | | | | | CSB-090
9540 | 9550 | CSB-090
9560 | 9570 | 9580 | CSB-090
9590 | 95100 | | 100 | 105 | | | | | | | | | | 10050 | 10060 | 10070 | 10080 | CSB-090
10090 | 100100 | | 105 | 110 | | | | | | | | | | 10550 | 10560 | 10570 | 10580 | CSB-090
10590 | 105100 | | 110 | 115 | | | | | | | | | | CSB-090
11050 | CSB-090
11060 | CSB-090
11070 | CSB-090
11080 | CSB-090
11090 | | # CSB-090(FB090) Metric cylindrical bushes | | | | | Unit:mm | | | | | | | | | | |-----|-----|----------------|----------------|---------|----|----|----|------------------|------------------|------------------|------------------|------------------|-------------------| | d | D | f ₁ | f ₂ | | | | | L . | 0.40 | | | I | | | | | | | 25 | 30 | 35 | 40 | 50 | 60
CSB-090 | 70
CSB-090 | 80
CSB-090 | 90
CSB-090 | 100
CSB-090 | | 115 | 120 | | | | | | | CSB-090
11550 | 11560 | 11570 | 11580 | 11590 | 115100 | | 120 | 125 | | | | | | | | CSB-090
12060 | CSB-090
12070 | CSB-090
12080 | CSB-090
12090 | CSB-090
120100 | | 125 | 130 | | | | | | | | CSB-090
12560 | CSB-090
12570 | CSB-090
12580 | CSB-090
12590 | CSB-090
125100 | | 130 | 135 | | | | | | | | CSB-090
13060 | CSB-090
13070 | CSB-090
13080 | CSB-090
13090 | CSB-090
130100 | | 135 | 140 | | | | | | | | CSB-090
13560 | CSB-090
13570 | CSB-090
13580 | CSB-090
13590 | CSB-090
135100 | | 140 | 145 | | | | | | | | CSB-090
14060 | CSB-090
14070 | CSB-090
14080 | CSB-090
14090 | CSB-090
140100 | | 145 | 150 | | | | | | | | CSB-090
14560 | CSB-090
14570 | CSB-090
14580 | CSB-090
14590 | CSB-090
145100 | | 150 | 155 | | | | | | | | CSB-090
15060 | CSB-090
15070 | CSB-090
15080 | CSB-090
15090 | CSB-090
150100 | | 155 | 160 | | | | | | | | CSB-090
15560 | CSB-090
15570 | CSB-090
15580 | CSB-090
15590 | CSB-090
155100 | | 160 | 165 | | | | | | | | CSB-090
16060 | CSB-090
16070 | CSB-090
16080 | CSB-090
16090 | CSB-090
160100 | | 165 | 170 | | | | | | | | CSB-090
16560 | CSB-090
16570 | CSB-090
16580 | CSB-090
16590 | CSB-090
165100 | | 170 | 175 | | | | | | | | CSB-090
17060 | CSB-090
17070 | CSB-090
17080 | CSB-090
17090 | CSB-090
170100 | | 175 | 180 | | | | | | | | CSB-090
17560 | CSB-090
17570 | CSB-090
17580 | CSB-090
17590 | CSB-090
175100 | | 180 | 185 | 1.4 | 0.8 | | | | | | CSB-090
18060 | CSB-090
18070 | CSB-090
18080 | CSB-090
18090 | CSB-090
180100 | | 185 | 190 | | | | | | | | CSB-090
18560 | CSB-090
18570 | CSB-090
18580 | CSB-090
18590 | CSB-090
185100 | | 190 | 195 | | | | | | | | CSB-090
19060 | CSB-090
19070 | CSB-090
19080 | CSB-090
19090 | CSB-090
190100 | | 195 | 200 | | | | | | | | CSB-090
19560 | CSB-090
19570 | CSB-090
19580 | CSB-090
19590 | CSB-090
195100 | | 200 | 205 | | | | | | | | CSB-090
20060 | CSB-090
20070 | CSB-090
20080 | CSB-090
20090 | CSB-090
200100 | | 205 | 210 | | | | | | | | CSB-090
20560 | CSB-090
20570 | CSB-090
20580 | CSB-090
20590 | CSB-090
205100 | | 215 | 220 | | | | | | | | CSB-090
21560 | CSB-090
21570 | CSB-090
21580 | CSB-090
21590 | CSB-090
215100 | | 225 | 230 | | | | | | | | CSB-090
22560 | CSB-090
22570 | CSB-090
22580 | CSB-090
22590 | CSB-090
225100 | | 230 | 235 | | | | | | | | CSB-090
23060 | CSB-090
23070 | CSB-090
23080 | CSB-090
23090 | CSB-090
230100 | | 240 | 245 | | | | | | | | CSB-090
24060 | CSB-090
24070 | CSB-090
24080 | CSB-090
24090 | CSB-090
240100 | | 250 | 255 | | | | | | | | CSB-090
25060 | CSB-090
25070 | CSB-090
25080 | CSB-090
25090 | CSB-090
250100 | | 260 | 265 | | | | | | | | CSB-090
26060 | CSB-090
26070 | CSB-090
26080 | CSB-090
26090 | CSB-090
260100 | | 270 | 275 | | | | | | | | CSB-090
27060 | CSB-090
27070 | CSB-090
27080 | CSB-090
27090 | CSB-090
270100 | | 280 | 285 | | | | | | | | CSB-090
28060 | CSB-090
28070 | CSB-090
28080 | CSB-090
28090 | CSB-090
280100 | | 290 | 295 | | | | | | | | CSB-090
29060 | CSB-090
29070 | CSB-090
29080 | CSB-090
29090 | CSB-090
290100 | | 300 | 305 | | | | | | | | CSB-090
30060 | CSB-090
30070 | CSB-090
30080 | CSB-090
30090 | CSB-090
300100 | #### CSB-B90(FBB090) Metric flange bushes split q_2 min. 0.3 R0.5~2 25°±5° Detail X Unit:mm d₁ d_a f_1 40 35 50 80 90 15 20 25 30 60 70 CSB-B90 25200 CSB-B90 25150 8.0 0.4 25250 CSB-B90 CSB-B90 30 34 45 CSB-B90 CSB-B90 | CSB-B90 CSB-B90 35 39 50 1.0 0.6 35250 CSB-B90 40300 44 55 40400 40350 CSB-B90 CSB-B90 CSB-B90 CSB-B90 45300 45350 45400 45500 45 50 60 CSB-B90 50300 CSB-B90 CSB-B90 CSB-B90 65 CSB-B90 55400 CSB-B90 55350 CSB-B90 60300 CSB-B90 60500 CSB-B90 60 65 75 1.2 0.8 CSB-B90 CSB-B90 CSB-B90 CSB-B90 CSB-B90 65 70 80 65350 CSB-B90 70500 CSB-B90 70600 CSB-B90 70700 75 70350 70400 CSB-B90 75350 CSB-B90 75400 CSB-B90 75500 75 80 90 CSB-B90 CSB-B90 80 85 100 80500 80700 CSB-B90 90600 CSB-B90 90700 CSB-B90 90900 CSB-B90 CSB-B90 90500 90800 100 105 120 CSB-B90 CSB-B90 CSB-B90 110600 CSB-B90 110 115 130 CSB-B90 120600 CSB-B90 120800 CSB-B90 120900 120 125 140 CSB-B90 130700 CSB-B90 130800 130 135 155 CSB-B90 140600 CSB-B90 140700 CSB-B90 140800 140 145 165 CSB-B90 150600 CSB-B90 150800 CSB-B90 150700 CSB-B90 160600 160 165 190 1.4 0.8 CSB-B90 CSB-B90 170800 170 175 200 CSB-B90 180600 CSB-B90 180700 CSB-B90 180800 CSB-B90 180900 180 185 215 CSB-B90 190600 190 195 225 CSB-B90 200600 CSB-B90 200 205 235 CSB-B90 225800 CSB-B90 225900 230 225700 225600 250 255 290 CSB-B90 CSB-B90 265 270 305 CSB-B90 285700 285 290 325 CSB-B90 CSB-B90 CSB-B90 300600 300700 300800 300 305 340 ## CSB-090(FB090) Bronze wrapped bushes ### **Chemical composition** | Material type | Cu% | Sn% | P% | Pb% | Zn% | |---------------|------|-----|-----|-----|-----| | CSB-090 | 91.3 | 8.5 | 0.2 | 1 | 1 | #### **Bushes tolerance** Unit:mm | I.D. | 10 <d≤18< th=""><th>18<d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<></th></d≤18<> | 18 <d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<> | 30 <d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<> | 50 <d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<> | 80 <d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<> | 120 <d≤180<
th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<> | 180 <d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<> | 250 <d≤300< th=""></d≤300<> | |---------------------|---|---|---|---|---|---|--|-----------------------------| | O.D.
tolerance | +0.065
+0.030 | +0.075
+0.035 | +0.085
+0.045 | +0.100
+0.055 | +0.120
+0.070 | +0.170
+0.100 | +0.210
+0.130 | +0.260
+0.170 | | Installed
I.D.H9 | +0.043 | +0.052 | +0.062 | +0.074
0 | +0.087
0 | +0.100
0 | +0.115
0 | +0.130
0 | | Housing: F | J7 | | | | | | | | ### Oil pocket type Inside Dia. $< \phi$ 22 Inside Dia. $\geqslant \phi$ 22 # CSB-T90(FT090) Metric cylindrical bushes | - 1 | In | ııt. | m | n | |-----|----------|------|---|---| | ٠. | <i>)</i> | IJι. | | | | d | D | f, | f_2 | | | | | | | L _{-0.40} | | | | | | | |-----|-----|-----|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|------------------|------------------|------------------|------------------|------------------|-------------------| | u | | '1 | | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | 10 | 12 | | | CSB-T90
1010 | CSB-T90
1015 | CSB-T90
1020 | | | | | | | | | | | | 12 | 14 | | | CSB-T90
1210 | CSB-T90
1215 | CSB-T90
1220 | | | | | | | | | | | | 14 | 16 | 0.5 | 0.0 | CSB-T90
1410 | CSB-T90
1415 | CSB-T90
1420 | CSB-T90
1425 | | | | | | | | | | | 15 | 17 | 0.5 | 0.3 | CSB-T90
1510 | CSB-T90
1515 | CSB-T90
1520 | CSB-T90
1525 | | | | | | | | | | | 16 | 18 | | | CSB-T90
1610 | CSB-T90
1615 | CSB-T90
1620 | CSB-T90
1625 | | | | | | | | | | | 18 | 20 | | | CSB-T90
1810 | CSB-T90
1815 | CSB-T90
1820 | CSB-T90
1825 | | | | | | | | | | | 20 | 23 | | | CSB-T90
2010 | CSB-T90
2015 | CSB-T90
2020 | CSB-T90
2025 | | | | | | | | | | | 22 | 25 | | | CSB-T90
2210 | CSB-T90
2215 | CSB-T90
2220 | CSB-T90
2225 | CSB-T90
2230 | | | | | | | | | | 24 | 27 | 0.8 | 0.4 | | CSB-T90
2415 | CSB-T90
2420 | CSB-T90
2425 | CSB-T90
2430 | | | | | | | | | | 25 | 28 | | | | CSB-T90
2515 | CSB-T90
2520 | CSB-T90
2525 | CSB-T90
2530 | | | | | | | | | | 28 | 31 | | | | CSB-T90
2815 | CSB-T90
2820 | CSB-T90
2825 | CSB-T90
2830 | | | | | | | | | | 30 | 34 | | | | CSB-T90
3015 | CSB-T90
3020 | CSB-T90
3025 | CSB-T90
3030 | CSB-T90
3035 | CSB-T90
3040 | | | | | | | | 32 | 36 | 4.0 | 0.0 | | CSB-T90
3215 | CSB-T90
3220 | CSB-T90
3225 | CSB-T90
3230 | CSB-T90
3235 | CSB-T90
3240 | | | | | | | | 35 | 39 | 1.0 | 0.6 | | CSB-T90
3515 | CSB-T90
3520 | CSB-T90
3525 | CSB-T90
3530 | CSB-T90
3535 | CSB-T90
3540 | | | | | | | | 40 | 44 | | | | | CSB-T90
4020 | CSB-T90
4025 | CSB-T90
4030 | CSB-T90
4035 | CSB-T90
4040 | CSB-T90
4050 | | | | | | | 45 | 50 | | | | | CSB-T90
4520 | CSB-T90
4525 | CSB-T90
4530 | CSB-T90
4535 | CSB-T90
4540 | CSB-T90
4550 | | | | | | | 50 | 55 | | | | | CSB-T90
5020 | CSB-T90
5025 | CSB-T90
5030 | CSB-T90
5035 | CSB-T90
5040 | CSB-T90
5050 | CSB-T90
5060 | | | | | | 55 | 60 | | | | | CSB-T90
5520 | CSB-T90
5525 | CSB-T90
5530 | CSB-T90
5535 | CSB-T90
5540 | CSB-T90
5550 | CSB-T90
5560 | | | | | | 60 | 65 | 1.2 | 0.8 | | | | CSB-T90
6025 | CSB-T90
6030 | CSB-T90
6035 | CSB-T90
6040 | CSB-T90
6050 | CSB-T90
6060 | CSB-T90
6070 | | | | | 65 | 70 | | | | | | | CSB-T90
6530 | CSB-T90
6535 | CSB-T90
6540 | CSB-T90
6550 | CSB-T90
6560 | CSB-T90
6570 | | | | | 70 | 75 | | | | | | | CSB-T90
7030 | CSB-T90
7035 | CSB-T90
7040 | CSB-T90
7050 | CSB-T90
7060 | CSB-T90
7070 | CSB-T90
7080 | | | | 75 | 80 | | | | | | | CSB-T90
7530 | CSB-T90
7535 | CSB-T90
7540 | CSB-T90
7550 | CSB-T90
7560 | CSB-T90
7570 | CSB-T90
7580 | | | | 80 | 85 | | | | | | | CSB-T90
8030 | CSB-T90
8035 | CSB-T90
8040 | CSB-T90
8050 | CSB-T90
8060 | CSB-T90
8070 | CSB-T90
8080 | | | | 85 | 90 | | | | | | | CSB-T90
8530 | CSB-T90
8535 | CSB-T90
8540 | CSB-T90
8550 | CSB-T90
8560 | CSB-T90
8570 | CSB-T90
8580 | CSB-T90
8590 | | | 90 | 95 | | | | | | | CSB-T90
9030 | CSB-T90
9035 | CSB-T90
9040 | CSB-T90
9050 | CSB-T90
9060 | CSB-T90
9070 | CSB-T90
9080 | CSB-T90
9090 | | | 95 | 100 | 1.4 | 0.8 | | | | | | | CSB-T90
9540 | 9550 | 9560 | 9570 | CSB-T90
9580 | 9590 | 95100 | | 100 | 105 | | | | | | | | | | | | | CSB-T90
10080 | | | | 105 | 110 | | | | | | | | | | CSB-T90
10550 | CSB-T90
10560 | CSB-T90
10570 | CSB-T90
10580 | CSB-T90
10590 | CSB-T90
105100 | | 110 | 115 | | | | | | | | | | CSB-T90
11050 | CSB-T90
11060 | CSB-T90
11070 | CSB-T90
11080 | CSB-T90
11090 | CSB-T90
110100 | # CSB-T90(FT090) Metric cylindrical bushes | | | | | | | | | | | | | | Unit:mm | |-----|-----|-----|----------------|----|----|----|----|------------------|------------------|------------------|------------------|------------------|-------------------| | d | D | f₁ | f ₂ | | | | | L. | 0
0.40 | | | | | | ď | | '1 | '2 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | 115 | 120 | | | | | | | CSB-T90
11550 | CSB-T90
11560 | CSB-T90
11570 | CSB-T90
11580 | CSB-T90
11590 | CSB-T90
115100 | | 120 | 125 | | | | | | | | CSB-T90
12060 | CSB-T90
12070 | CSB-T90
12080 | CSB-T90
12090 | CSB-T90
120100 | | 125 | 130 | | | | | | | | CSB-T90
12560 | CSB-T90
12570 | CSB-T90
12580 | CSB-T90
12590 | CSB-T90
125100 | | 130 | 135 | | | | | | | | CSB-T90
13060 | CSB-T90
13070 | CSB-T90
13080 | CSB-T90
13090 | CSB-T90
130100 | | 135 | 140 | | | | | | | | CSB-T90
13560 | CSB-T90
13570 | CSB-T90
13580 | CSB-T90
13590 | CSB-T90
135100 | | 140 | 145 | | | | | | | | CSB-T90
14060 | CSB-T90
14070 | CSB-T90
14080 | CSB-T90
14090 | CSB-T90
140100 | | 145 | 150 | | | | | | | | CSB-T90
14560 | CSB-T90
14570 | CSB-T90
14580 | CSB-T90
14590 | CSB-T90
145100 | | 150 | 155 | | | | | | | | CSB-T90
15060 | CSB-T90
15070 | CSB-T90
15080 | CSB-T90
15090 | CSB-T90
150100 | | 155 | 160 | | | | | | | | CSB-T90
15560 | CSB-T90
15570 | CSB-T90
15580 | CSB-T90
15590 | CSB-T90
155100 | | 160 | 165 | | | | | | | | CSB-T90
16060 | CSB-T90
16070 | CSB-T90
16080 | CSB-T90
16090 | CSB-T90
160100 | | 165 | 170 | | | | | | | | CSB-T90
16560 | CSB-T90
16570 | CSB-T90
16580 | CSB-T90
16590 | CSB-T90
165100 | | 170 | 175 | | | | | | | | CSB-T90
17060 | CSB-T90
17070 | CSB-T90
17080 | CSB-T90
17090 | CSB-T90
170100 | | 175 | 180 | | | | | | | | CSB-T90
17560 | CSB-T90
17570 | CSB-T90
17580 | CSB-T90
17590 | CSB-T90
175100 | | 180 | 185 | 1.4 | 0.8 | | | | | | CSB-T90
18060 | CSB-T90
18070 | CSB-T90
18080 | CSB-T90
18090 | CSB-T90
180100 | | 185 | 190 | | | | | | | | CSB-T90
18560 | CSB-T90
18570 | CSB-T90
18580 | CSB-T90
18590 | CSB-T90
185100 | | 190 | 195 | | | | | | | | CSB-T90
19060 | CSB-T90
19070 | CSB-T90
19080 | CSB-T90
19090 | CSB-T90
190100 | | 195 | 200 | | | | | | | | CSB-T90
19560 | CSB-T90
19570 | CSB-T90
19580 | CSB-T90
19590 | CSB-T90
195100 | | 200 | 205 | | | | | | | | CSB-T90
20060 | CSB-T90
20070 | CSB-T90
20080 | CSB-T90
20090 | CSB-T90
200100 | | 205 | 210 | | | | | | | | CSB-T90
20560 | CSB-T90
20570 | CSB-T90
20580 | CSB-T90
20590 | CSB-T90
205100 | | 215 | 220 | | | | | | | | CSB-T90
21560 | CSB-T90
21570 | CSB-T90
21580 | CSB-T90
21590 | CSB-T90
215100 | | 225 | 230 | | | | | | | | CSB-T90
22560 | CSB-T90
22570 | CSB-T90
22580 | CSB-T90
22590 | CSB-T90
225100 | | 230 | 235 | | | | | | | | CSB-T90
23060 | CSB-T90
23070 | CSB-T90
23080 | CSB-T90
23090 | CSB-T90
230100 | | 240 | 245 | | | | | | | | CSB-T90
24060 | CSB-T90
24070 | CSB-T90
24080 | CSB-T90
24090 | CSB-T90
240100 | | 250 | 255 | | | | | | | | CSB-T90
25060 | CSB-T90
25070 | CSB-T90
25080 | CSB-T90
25090 | CSB-T90
250100 | | 260 | 265 | | | | | | | | CSB-T90
26060 | CSB-T90
26070 | CSB-T90
26080 | CSB-T90
26090 | CSB-T90
260100 | | 270 | 275 | | | | | | | | CSB-T90
27060 | CSB-T90
27070 | CSB-T90
27080 | CSB-T90
27090 | CSB-T90
270100 | | 280 | 285 | | | | | | | | CSB-T90
28060 | CSB-T90
28070 | CSB-T90
28080 | CSB-T90
28090 | CSB-T90
280100 | | 290 | 295 | | | | | | | | CSB-T90
29060 | CSB-T90
29070 | CSB-T90
29080 | CSB-T90
29090 | CSB-T90
290100 | | 300 | 305 | | | | | | | |
CSB-T90
30060 | CSB-T90
30070 | CSB-T90
30080 | CSB-T90
30090 | CSB-T90
300100 | # CSB-TB90(FTB090) Metric flange bushes | | | | | | | | | | | 1 0 | | | | | nitimm | |----------------|-------|----------------|-----|----------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | d ₁ | d_2 | d ₃ | f, | f ₂ | | | | | | └ -0.40 | | | | | | | | | J | | | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | | 25 | 28 | 35 | 0.8 | 0.4 | 25150 | CSB-TB90
25200 | 25250 | | | | | | | | | | 30 | 34 | 45 | | | | CSB-TB90
30200 | CSB-TB90
30250 | CSB-TB90
30300 | | | | | | | | | 35 | 39 | 50 | 1.0 | 0.6 | | CSB-TB90
35200 | CSB-TB90
35250 | CSB-TB90
35300 | CSB-TB90
35350 | | | | | | | | 40 | 44 | 55 | | | | | CSB-TB90
40250 | CSB-TB90
40300 | CSB-TB90
40350 | CSB-TB90
40400 | | | | | | | 45 | 50 | 60 | | | | | | CSB-TB90
45300 | CSB-TB90
45350 | CSB-TB90
45400 | CSB-TB90
45500 | | | | | | 50 | 55 | 65 | | | | | | CSB-TB90
50300 | CSB-TB90
50350 | CSB-TB90
50400 | CSB-TB90
50500 | | | | | | 55 | 60 | 70 | | | | | | CSB-TB90
55300 | CSB-TB90
55350 | CSB-TB90
55400 | CSB-TB90
55500 | | | | | | 60 | 65 | 75 | 1.2 | 0.8 | | | | CSB-TB90
60300 | CSB-TB90
60350 | CSB-TB90
60400 | CSB-TB90
60500 | CSB-TB90
60600 | | | | | 65 | 70 | 80 | | | | | | CSB-TB90
65300 | CSB-TB90
65350 | CSB-TB90
65400 | CSB-TB90
65500 | CSB-TB90
65600 | | | | | 70 | 75 | 85 | | | | | | | CSB-TB90
70350 | CSB-TB90
70400 | CSB-TB90
70500 | CSB-TB90
70600 | CSB-TB90
70700 | | | | 75 | 80 | 90 | | | | | | | CSB-TB90
75350 | CSB-TB90
75400 | CSB-TB90
75500 | CSB-TB90
75600 | CSB-TB90
75700 | | | | 80 | 85 | 100 | | | | | | | CSB-TB90
80350 | CSB-TB90
80400 | CSB-TB90
80500 | CSB-TB90
80600 | CSB-TB90
80700 | CSB-TB90
80800 | | | 90 | 95 | 110 | | | | | | | | | CSB-TB90
90500 | CSB-TB90
90600 | CSB-TB90
90700 | CSB-TB90
90800 | CSB-TB90
90900 | | 100 | 105 | 120 | | | | | | | | | CSB-TB90
100500 | CSB-TB90
100600 | CSB-TB90
100700 | CSB-TB90
100800 | CSB-TB90
100900 | | 110 | 115 | 130 | | | | | | | | | CSB-TB90
110500 | CSB-TB90
110600 | CSB-TB90
110700 | CSB-TB90
110800 | CSB-TB90
110900 | | 120 | 125 | 140 | | | | | | | | | CSB-TB90
120500 | CSB-TB90
120600 | CSB-TB90
120700 | CSB-TB90
120800 | CSB-TB90
120900 | | 130 | 135 | 155 | | | | | | | | | | CSB-TB90
130600 | CSB-TB90
130700 | CSB-TB90
130800 | CSB-TB90
130900 | | 140 | 145 | 165 | | | | | | | | | | CSB-TB90
140600 | CSB-TB90
140700 | | | | 150 | 155 | 180 | | | | | | | | | | CSB-TB90
150600 | CSB-TB90
150700 | | | | 160 | 165 | 190 | 1.4 | 0.8 | | | | | | | | | CSB-TB90
160700 | | | | 170 | 175 | 200 | | | | | | | | | | | CSB-TB90
170700 | | | | 180 | 185 | 215 | | | | | | | | | | | CSB-TB90
180700 | | | | 190 | 195 | 225 | | | | | | | | | | | CSB-TB90
190700 | | | | 200 | 205 | 235 | | | | | | | | | | | CSB-TB90
200700 | | | | 225 | 230 | 260 | | | | | | | | | | | CSB-TB90
225700 | | | | 250 | 255 | 290 | | | | | | | | | | | CSB-TB90
250700 | | | | 265 | 270 | 305 | | | | | | | | | | | CSB-TB90
265700 | | | | 285 | 290 | 325 | | | | | | | | | | | CSB-TB90
285700 | | | | 300 | 305 | 340 | | | | | | | | | | | CSB-TB90 | | | ## CSB-T90(FT090) Bronze wrapped bushes ### **Chemical composition** | Material type | Cu% | Sn% | P% | Pb% | Zn% | |---------------|------|-----|-----|-----|-----| | CSB-T09 | 91.3 | 8.5 | 0.2 | 1 | 1 | #### **Bushes tolerance** #### Unit:mm | I.D. | 10 <d≤18< th=""><th>18<d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<></th></d≤18<> | 18 <d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<> | 30 <d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<> | 50 <d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<> | 80 <d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<> | 120 <d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<> | 180 <d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<> | 250 <d≤300< th=""></d≤300<> | |---------------------|---|---|---|---|---|---|--|-----------------------------| | O.D.
tolerance | +0.065
+0.030 | +0.075
+0.035 | +0.085
+0.045 | +0.100
+0.055 | +0.120
+0.070 | +0.170
+0.100 | +0.210
+0.130 | +0.260
+0.170 | | Installed
I.D.H9 | +0.043 | +0.052 | +0.062 | +0.074 | +0.087
0 | +0.100
0 | +0.115
0 | +0.130
0 | | Housing: H |
17 | | | | | | | | ### Oil hole type ### Inside Dia.≤ **425** #### Inside Dia. ≥ 4 28 #### **CSB850S** Metric cylindrical bushes 1.6 dF7 H7 48 R1~3 R1~3 3.2/ Sinter layer Shaft >1mm Steel backing Sliding direction Unit:mm dF7 Dm₆ 8 10 12 15 16 20 25 30 35 40 50 60 70 80 850SB 850SB 850SB 850SB 12 081208 081210 081212 081215 +0.028 850SB 850SB 850SB 850SB 850SB 10 14 101408 101410 101412 101415 101420 850SB 850SB 850SB 12 18 121810 121812 121815 121816 121820 121825 121830 850SB 850SB 850SB 19 131910 131915 131916 850SB | 850SB 850SB 850SB 850SB 850SB 14 20 142010 142012 142015 142020 142025 142030 +0.034 +0.016 850SB 850SB 850SB 850SB 850SB 850SB 15 21 152110 152112 152115 152116 152120 152125 152130 +0.021 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB 22 162210 162212 162215 162216 162220 162225 162230 162235 162240 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB 18 24 182412 182415 182416 182420 182425 182430 182435 182440 850SB 850SB 850SB 850SB 850SB 850SB 20 28 202812 202815 202816 202820 202825 202830 202835 202840 202850 850SB 850SB 850SB 850SB 32 +0.041 850SB 25 33 253312 253315 253316 253320 253325 253330 253335 253340 253350 253360 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB +0.025 +0.009 30 38 303812 303815 303820 303825 303830 303835 303840 303850 303860 850SB 850SB 850SB 850SB 850SB 850SB 850SB 354520 354525 354530 354540 354550 354560 354535 850SB 850SB 850SB 850SB 850SB 850SB 40 50 405020 405025 405030 405035 405040 405050 405060 405070 405080 +0.050 +0.025 850SB 850SB 850SB 850SB 850SB 45 455530 455535 455540 455550 455560 +0.030 +0.011 850SB 850SB 850SB 850SB 850SB 850SB 850SB 50 506035 506040 506050 506060 506070 506080 # CSB850S Metric cylindrical bushes | | | | | | | | | | | | | Unit.mini |-----|------------------|-----|------------------|------------------|-----------------|------------------|------------------|-----------------------------|-------------------|-------------------|--------------------|--------------------|--|--|--|--------|--|--|--|--|--|--------|--------|--------|--|--|--|--|--|--|--|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------| | dl | F7 | Dr | m6 | | | | | L ^{-0.10}
-0.30 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 100 | 120 | 50 | +0.050 | 62 | | 850SB
506230 | 850SB
506235 | 850SB
506240 | 850SB
506250 | 850SB
506260 | 850SB
506270 | 50 | +0.025 | 65 | | 850SB
506530 | | 850SB
506540 | 850SB
506550 | 850SB
506560 | 850SB
506570 | 850SB
506580 | 850SB
5065100 | 55 | | 70 | | | | 850SB
557040 | 850SB
557050 | 850SB
557060 | 850SB
557070 | 60 | | 74 | +0.030
+0.011 | 850SB
607430 | 850SB
607435 | 850SB
607440 | 850SB
607450 | 850SB
607460 | 850SB
607470 | 850SB
607480 | 60 | | 75 | | 850SB
607530 | 850SB
607535 | 850SB
607540 | 850SB
607550 | 850SB
607560 | 850SB
607570 | 850SB
607580 | 850SB
6075100 | 63 | | 75 | | | | | | 850SB
637560 |
850SB
637570 | 850SB
637580 | 65 | | 80 | | | | | 850SB
658050 | 850SB
658060 | 850SB
658070 | 850SB
658080 | 70 | +0.060
+0.030 | 85 | | | 850SB
708535 | 850SB
708540 | 850SB
708550 | 850SB
708560 | 850SB
708570 | 850SB
708580 | 850SB
7085100 | 70 | | 90 | | | | | 850SB
709050 | 850SB
709060 | 850SB
709070 | 850SB
709080 | 75 | | 90 | | | | | | 850SB
759060 | 850SB
759070 | 850SB
759080 | 850SB
7590100 | 75 | | 95 | +0.035 | | | | | 850SB
759560 | 850SB
759570 | 850SB
759580 | 850SB
7595100 | 80 | | 96 | +0.035
+0.013 | | | | | | | +0.013 | | | | | | +0.013 | | | | | | +0.013 | +0.013 | +0.013 | | | | | | | | 850SB
809640 | 850SB
809650 | 850SB
809660 | 850SB
809670 | 850SB
809680 | 850SB
8096100 | 850SB
8096120 | | 80 | | 100 | | | | 850SB
8010040 | 850SB
8010050 | 850SB
8010060 | 850SB
8010070 | 850SB
8010080 | 850SB
80100100 | 850SB
80100120 | 90 | +0.071 | 110 | | 850SB
9011030 | | | 850SB
9011050 | 850SB
9011060 | 850SB
9011070 | 850SB
9011080 | 850SB
90110100 | 850SB
90110120 | 100 | +0.036 | 120 | | | | | | 850SB
10012060 | 850SB
10012070 | 850SB
10012080 | 850SB
100120100 | 850SB
100120120 | ## CSB850S JSOX wear plate | Stanard No. | W | L | w | w ₁ | e | ℓ_1 | | |-------------|-----|-----------|-----|-----------------------|----------|----------|--| | | | 75 | | | 45 | 15 | | | | 28 | 100 | | | 50 | 25 | | | | | 150 | | | 100 | | | | | | 75 | | | 45 | 15 | | | | 38 | 100 | | | 50 | 25 | | | | | 150 | | | 100 | | | | | | 75 | | | 45 | 25 | | | | 40 | 100 | _ | _ | 50 | | | | | 48 | 125 | | | 75 | 50 | | | | | 150 | _ | | 100 | | | | | | 200
75 | | | | | | | | | 100 | | | 25
50 | | | | | 75 | 125 | | | | 75 | | | | /5 | 150 | | | 100 | | | | JSOX | | 200 | | | 150 | 25 | | | 300X | | 100 | | | 50 | 20 | | | | | 125 | | | 75 | | | | | | 150 | | | 100 | | | | | 100 | 200 | 50 | 25 | 150 | | | | | | 250 | | | | | | | | | 300 | | | 200 | 50 | | | | | 150 | | | 100 | | | | | 125 | 200 | 50 | 37.5 | 150 | 25 | | | | 123 | 250 | 30 | 37.3 | 200 | | | | | | 300 | | | | 50 | | | | | 150 | | | 100 | | | | | 150 | 200 | 100 | 25 | 150 | 25 | | | | | 250 | | | 200 | | | # CSB850S JTWX wear plate ### **JTWX** | Standard No. | W | L | w | w ₁ | e | ℓ_1 | |--------------|-----|-----|-----|-----------------------|-----|----------| | | | 75 | | | 45 | 15 | | | 28 | 100 | | | 50 | | | | 20 | 125 | | | 75 | 25 | | | | 150 | | | 100 | | | | | 75 | | | 45 | 15 | | | 38 | 100 | | | 50 | | | | 30 | 125 | | | 75 | 25 | | | | 150 | | | 100 | | | | | 75 | _ | _ | 45 | 15 | | | | 100 | | | 50 | | | | 48 | 125 | | | 75 | 25 | | | | 150 | | | 100 | | | | | 200 | | | | 50 | | | | 75 | | | 25 | | | | | 100 | | | 50 | | | JTWX | 75 | 125 | | | 75 | | | | | 150 | | | 100 | | | | | 200 | | | 150 | 25 | | | | 100 | | | 50 | | | | | 125 | | | 75 | | | | 100 | 150 | 50 | 25 | 100 | | | | 100 | 200 | | 20 | 150 | | | | | 250 | | | 200 | | | | | 300 | | | | 50 | | | | 125 | 75 | | 75 | | | | | 150 | | | 100 | 25 | | | 125 | 200 | 50 | 37.5 | 150 | | | | | 250 | | 0,.0 | 200 | | | | | 300 | | | | 50 | | | | 150 | | | 100 | | | | 150 | 200 | 100 | 25 | 150 | 25 | | | | 250 | | | 200 | | ## CSB850S JCUX wear plate ### **JCUX** #### L=150 · 200 L=250 Unit:mm | Standard No. | W | L | e | ℓ_1 | ℓ_2 | w | d | |--------------|----|-----|----|----------|----------|----|----| | | | 150 | 50 | | _ | | | | JCUX | 82 | 200 | 75 | 25 | _ | 25 | 18 | | | | 250 | 75 | | 50 | | | ## CSB850S JPRX/JOXT wear plate **JPRX** JOXT #### Unit:mm | Standard No. | W | L | W ₁ | w | e | |--------------|-----|-----|----------------|----|-----| | | | 100 | | | 50 | | | | 125 | | | 75 | | | 74 | 150 | 100 | 40 | 100 | | | | 200 | | | 150 | | JPRX | | 250 | | | 200 | | JFKA | | 150 | | | 100 | | | 99 | 200 | 125 | 50 | 150 | | | | 250 | | | 200 | | | 124 | 150 | 150 | 90 | 100 | | | 124 | 200 | 130 | 90 | 150 | | Standard No. | W | L | e | ℓ_1 | |--------------|-----|-----|-----|----------| | | | 100 | 50 | | | | | 125 | 75 | | | | 400 | 150 | 100 | 25 | | | 100 | 200 | 150 | | | | | 250 | 200 | | | | | 300 | 200 | 50 | | JOXT | | 125 | 75 | | | 30/1 | | 150 | 100 | 25 | | | 125 | 200 | 150 | 25 | | | | 250 | 200 | | | | | 300 | 200 | 50 | | | | 150 | 100 | | | | 150 | 200 | 150 | 25 | | | | 250 | 200 | | #### **CSB850BM** Metric cylindrical bushes d Split Detail X Unit:mm L 0 -0.40 0.6 0.3 0.6 0.4 1.2 0.4 1.8 0.6 1.8 0.6 # CSB850BM Metric cylindrical bushes | | | | | | | | | | | | | | Unit:mm | |-----|-----|----------------|----------------|----|----|----|----|-------|-----------|-------|-------|-------|---------| | d | D | f ₁ | f ₂ | | | | | L. | 0
0.40 | | | | | | | | '1 | '2 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | 115 | 120 | | | | | | | 11550 | 11560 | 11570 | 11580 | 11590 | 115100 | | 120 | 125 | | | | | | | | 12060 | 12070 | 12080 | 12090 | 120100 | | 125 | 130 | | | | | | | | 12560 | 12570 | 12580 | 12590 | 125100 | | 130 | 135 | | | | | | | | 13060 | 13070 | 13080 | 13090 | 130100 | | 135 | 140 | | | | | | | | 13560 | 13570 | 13580 | 13590 | 135100 | | 140 | 145 | | | | | | | | 14060 | 14070 | 14080 | 14090 | 140100 | | 145 | 150 | | | | | | | | 14560 | 14570 | 14580 | 14590 | 145100 | | 150 | 155 | | | | | | | | 15060 | 15070 | 15080 | 15090 | 150100 | | 155 | 160 | | | | | | | | 15560 | 15570 | 15580 | 15590 | 155100 | | 160 | 165 | | | | | | | | 16060 | 16070 | 16080 | 16090 | 160100 | | 165 | 170 | | | | | | | | 16560 | 16570 | 16580 | 16590 | 165100 | | 170 | 175 | | | | | | | | 17060 | 17070 | 17080 | 17090 | 170100 | | 175 | 180 | | | | | | | | 17560 | 17570 | 17580 | 17590 | 175100 | | 180 | 185 | 1.4 | 0.8 | | | | | | 18060 | 18070 | 18080 | 18090 | 180100 | | 185 | 190 | | | | | | | | 18560 | 18570 | 18580 | 18590 | 185100 | | 190 | 195 | | | | | | | | 19060 | 19070 | 19080 | 19090 | 190100 | | 195 | 200 | | | | | | | | 19560 | 19570 | 19580 | 19590 | 195100 | | 200 | 205 | | | | | | | | 20060 | 20070 | 20080 | 20090 | 200100 | | 205 | 210 | | | | | | | | 20560 | 20570 | 20580 | 20590 | 205100 | | 215 | 220 | | | | | | | | 21560 | 21570 | 21580 | 21590 | 215100 | | 225 | 230 | | | | | | | | 22560 | 22570 | 22580 | 22590 | 225100 | | 230 | 235 | | | | | | | | 23060 | 23070 | 23080 | 23090 | 230100 | | 240 | 245 | | | | | | | | 24060 | 24070 | 24080 | 24090 | 240100 | | 250 | 255 | | | | | | | | 25060 | 25070 | 25080 | 25090 | 250100 | | 260 | 265 | | | | | | | | 26060 | 26070 | 26080 | 26090 | 260100 | | 270 | 275 | | | | | | | | 27060 | 27070 | 27080 | 27090 | 270100 | | 280 | 285 | | | | | | | | 28060 | 28070 | 28080 | 28090 | 280100 | | 290 | 295 | | | | | | | | 29060 | 29070 | 29080 | 29090 | 290100 | | 300 | 305 | | | | | | | | 30060 | 30070 | 30080 | 30090 | 300100 | | | | | | | | | | | | | | | | ## CSB850BM Metric cylindrical bushes Unit:mm | Bushes | toleran | се | | | | | | | | | | | | | | |---------------------|---|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|--|--|--|--|--|--| | I.D. | I.D. 10 <d\le 120="" 120<d\le="" 18="" 180="" 180<d\le="" 18<d\le="" 250="" 250<d\le="" 30="" 300<="" 30<d\le="" 50="" 50<d\le="" 80="" 80<d\le="" th="" =""></d\le> | | | | | | | | | | | | | | | | O.D.
tolerance | +0.065
+0.030 | +0.075
+0.035 | +0.085
+0.045 | +0.100
+0.055 | +0.120
+0.070 | +0.170
+0.100 | +0.210
+0.130 | +0.260
+0.170 | | | | | | | | | Installed
I.D.H9 | +0.043
0 | +0.052
0 | +0.062
0 | +0.074
0 | +0.087
0 | +0.100
0 | +0.115
0 | +0.130
0 | | | | | | | | | Housing: H | Housing: H7 | | | | | | | | | | | | | | | ### **Metric standard strip** Unit:mm | Thickness -0.05 | Lining layer thickness | Length±1 | Thickness -0.05 | |-----------------|------------------------|----------|-----------------| | 1.0 | ≥0.40 | 500 | 150 | | 1.5 | ≥0.50 | 500 | 150 | | 2.0 | ≥0.70 | 500 | 150 | | 2.5 | ≥0.75 | 500 | 150 | | 3.0 | ≥1.00 | 500 | 150 | | 5.0 | ≥1.50 | 500 | 150 | ### CSB850BM Strip 2, 2.5 and 3 mm thick ## CSB850BM Metric cylindrical bushes #### Unit:mm | Thread
to DIN 13 | d | D | D ₁ | D_2 | h | BM 10 | BM 11 | Hole spacing tolerance | |---------------------|------|----|----------------|-------|-------|-------|-------|------------------------| | M5 | 5.3 | 11 | 9.5 | 10.5 | 2 | 0.0 | | | | M6 | 6.4 | 13 | 11.5 | 12.5 | 2/2.5 | 0.8 | 0.8 | ±0.1 | | M8 | 8.4 | 17 | 15 | 16 | 2.5/3 | 3 | 0.0 | | | M10 | 10.5 | 21 | 18.5 | 19.5 | 3 | 3 | | ±0.15 | ### CSB850BM Strip 5 mm thick ### CSB850BM Strip 10 mm thick ## CSB-800 Metric cylindrical bushes | d | D | | Housing | Installed
bearing | | 'all
ness | Oil | f ₁ | f ₂ | | | | L. | 0
0.40 | | | | |----|----|----------------------|----------------------|----------------------|-------|--------------|-------|----------------|----------------|------|------|------|------|-----------|------|------|----| | | | h8 | H7 | d | min | max | hole | | | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | | 10 | 12 | 10 -0.022 | | | | | | | | 1010 | 1015 | 1020 | | | | | | | 12 | 14 | 12 -0.027 | 14 +0.018 | | | | | 0.5 | 0.3 | 1210 | 1215 | 1220 | | | | | | | 14 | 16 | 14 -0.027 | 16 +0.018 |
+0.148
+0.010 | 0.995 | 0.935 | .935 | 0.5 | 0.0 | 1410 | 1415 | 1420 | | | | | | | 15 | 17 | 15 _{-0.027} | 17 +0.018 | | | | 4 | | | 1510 | 1515 | 1520 | | | | | | | 16 | 18 | 16 _{-0.027} | 18 +0.018 | | | | | | .8 0.4 | 1610 | 1615 | 1620 | | | | | | | 18 | 20 | 18 _{-0.027} | 20 +0.021 | +0.151
+0.010 | | | | 0.8 | | 1810 | 1815 | 1820 | 1825 | | | | | | 20 | 23 | 20 _{-0.033} | 23 +0.021 | | 1.490 | | | 8.0 | | 2010 | 2015 | 2020 | 2025 | | | | | | 22 | 25 | 22 _{-0.033} | 25 +0.021 | +0.181 | | 1 120 | 1.430 | | | 2210 | 2215 | 2220 | 2225 | | | | | | 24 | 27 | 24 -0.033 | 27 +0.021 | +0.020 | | 1.430 | | | | 2410 | 2415 | 2420 | 2425 | 2430 | | | | | 25 | 28 | 25 -0.033 | 28 +0.021 | | | | | 1.0 | 0.5 | | 2515 | 2520 | 2525 | 2530 | | | | | 26 | 30 | 26 _{-0.033} | 30 +0.021 | | | | 6 | 1.0 | 0.5 | | 2615 | 2620 | 2625 | 2630 | | | | | 28 | 32 | 28 _{-0.033} | 32 +0.025 | | | | 0 | | | | 2815 | 2820 | 2825 | 2830 | 2840 | | | | 30 | 34 | 30 _{-0.033} | 34 +0.025 | | | | | | | | 3015 | 3020 | 3025 | 3030 | 3040 | | | | 32 | 36 | 32 _{-0.039} | 36 ^{+0.025} | +0.205
+0.030 | 1.980 | 1.920 | | | | | 3215 | 3220 | 3225 | 3230 | 3240 | | | | 35 | 39 | 35 _{-0.039} | 39 +0.025 | | | | | 1.2 | 0.6 | | | 3520 | 3525 | 3530 | 3540 | 3550 | | | 38 | 42 | | 42 +0.025 | | | | 8 | | | | | 3820 | 3825 | 3830 | 3840 | 3850 | | | 40 | 44 | 40 _{-0.039} | 44 +0.025 | | | | 0 | | | | | 4020 | 4025 | 4030 | 4040 | 4050 | | # CSB-800 Metric cylindrical bushes | | | | | | | | | | | | | | | | | UI | nit:mm | | | |-----|-----|-----------------------|-----------------------|------------------|------------|-------------|------|----------------|----------------|------|------|------|--------------------|-------|-------|-------|--------|-------|--| | d | D | Axle | Housing | bearing | W
thick | all
ness | Oil | f ₁ | f ₂ | | | | L _{-0.40} | 0 | | | | | | | | | h8 | H7 | d | min | max | hole | | | 25 | 30 | 40 | 50 | 60 | 80 | 90 | 100 | | | | 45 | 50 | 45 -0.039 | 50 ^{+0.025} | +0.205
+0.030 | | | | | | 4525 | 4530 | 4540 | 4550 | | | | | | | | 50 | 55 | 50 -0.039 | | | | | | | | | 5030 | 5040 | 5050 | 5060 | | | | | | | 55 | 60 | 55
-0.046 | | | | | 0 | | | | 5530 | 5540 | 5550 | 5560 | | | | | | | 60 | 65 | 60 -0.046 | | +0.210 | | | 8 | | | | 6030 | 6040 | 6050 | 6060 | | | | | | | 65 | 70 | 65
-0.046 | | +0.030 | | | | | | | 6530 | 6540 | 6550 | 6560 | | | | | | | 70 | 75 | 70 -0.046 | TU U3U | | | | | | | | 7030 | 7040 | 7050 | 7060 | 7080 | | | | | | 75 | 80 | 75
-0.046 | +0.030 | | | 2.400 | | | | | 7530 | 7540 | 7550 | 7560 | | | | | | | 80 | 85 | 80 -0.046 | . 0 005 | | | | | | | | | 8040 | 8050 | 8060 | 8080 | | | | | | 85 | 90 | 85
-0.054 | ±0.035 | | | | | | | | 8530 | | 8550 | 8560 | 8580 | | 85100 | | | | 90 | 95 | 90 -0.054 | 95 ^{+0.035} | | 2.460 | | | 1.5 | 1.0 | | | | 9050 | 9060 | 9080 | | 90100 | | | | 95 | 100 | 95 -0.054 | 100+0.035 | | | | | | | | | | | | 9560 | 9580 | 9590 | 95100 | | | 100 | 105 | -0.034 | | | | | | | | | | | | 10060 | 10080 | 10090 | 100100 | | | | 105 | 110 | 105 _{-0.054} | 110 ^{+0.035} | | | | | | | | | | | 10560 | 10580 | | 105100 | | | | 110 | 115 | 110 _{-0.054} | | | | | 9.5 | | | | | | | 11060 | 11080 | | 110100 | | | | 115 | 120 | 0.00. | | | | | | | | | | | 11550 | | 11580 | | | | | | 120 | 125 | | 125 +0.040 | | | | | | | | | | 12050 | 12060 | | | 120100 | | | | 125 | 130 | 125 _{-0.063} | 130 +0.040 | | | | | | | | | | | | | | 125100 | | | | 130 | 135 | -0.063 | 135 +0.040 | +0.220 +0.030 | | | | | | | | | | 13060 | | | 130100 | | | | 135 | 140 | 135 _{-0.063} | | | | | | | | | | | | 13560 | 13580 | | | | | | 140 | | -0.003 | | | | | | | | | | | | | | | 14060 | 14080 | | | 150 | 155 | 1500.063 | +0.040
155 | | | | | | | | | | | 15060 | 15080 | | 150100 | | | ### MJF-800 Welding flange type bushes Unit:mm | Туре | e A (| Grindi | ng te | chnic | al | | | | | | | | | |------|-------|--------|-------|--------|---------|--------|-------|-------|------------------|-------|------------------|---------|--------| | ΦF | φD | t7 | φ d | D8 | L ± 0.4 | T± 0.5 | φF | φD | t7 | φd | D8 | L ± 0.4 | T± 0.5 | | 60 | 46 | +0.079 | 40 | | 39.5 | 4.5 | 92.5 | 77 | | 70.4 | | 70 | 4.5 | | 67 | 50 | +0.054 | 44.4 | | 37 | 4.7 | 99 | 77 | | 70 | | 82.5 | 4.5 | | 63 | 53 | | 43.4 | +0.119 | 48 | 5 | 112 | 77.25 | +0.105
+0.075 | 70.35 | +0.146
+0.100 | 89.6 | 4.5 | | 70 | 57 | | 50 | +0.080 | 45 | 4.5 | 93 | 78 | | 70.4 | | 72 | 6 | | 70 | 57 | +0.096 | 50 | | 48 | 4.5 | 93 | 80 | | 70.4 | | 75 | 8 | | 70 | 58 | +0.066 | 50 | | 46 | 7.9 | 98 | 82 | | 75.4 | | 74 | 4.5 | | 92 | 60.6 | | 54.5 | | 59 | 4.5 | 107 | 82 | | 75.4 | | 80 | 4.5 | | 85 | 62 | | 55 | | 51 | 4.5 | 97 | 85 | | 75.4 | | 70 | 5 | | 95 | 67 | | 60 | | 67 | 3.5 | 97 | 85 | | 75.4 | | 80 | 10 | | 87 | 68 | | 60.2 | | 60 | 6 | 120 | 87.6 | +0.126 | 80 | | 93 | 3.8 | | 103 | 70.8 | | 63.7 | +0.146 | 65 | 4.5 | 128 | 90.5 | +0.091 | 82.8 | | 108 | 4.5 | | 103 | 70.8 | +0.105 | 63.7 | +0.100 | 73 | 4.5 | 129.6 | 91.2 | | 83.1 | | 107.7 | 4.5 | | 95 | 72 | +0.075 | 65 | | 64 | 3.5 | 120 | 92 | | 85.4 | | 82 | 4.5 | | 95 | 72 | | 65 | | 72 | 4.5 | 128 | 92.6 | | 85 | +0.174
+0.120 | 103.5 | 4.5 | | 108 | 72 | | 65 | | 75 | 3.5 | 120 | 93 | | 85 | 10.120 | 94 | 6 | | 97 | 72 | | 65 | | 77 | 3.5 | 138 | 97.5 | | 89.3 | | 126.5 | 4.5 | | 97 | 77 | | 70 | | 62 | 4.5 | 144 | 105 | +0.139 | 95 | | 127 | 5 | The above mentioned sizes are only for reference, CSB can produce the parts according to the customers drawings. ### Grinding type bushe inspection and tolerance recommend A: Grinding technical type bushes O.D.: Average data by O.D. Micro-meter I.D.: Average data by 3-point Micro-meter Tolerance: OD-t7 ID-D8 Mating tolerance: Housing-H7 shaft-e7/f7 ### MJF-800 Welding flange type bushes Unit:mm | Туре | Type B Sizing technical | | | | | | | | | | | | | | | |------|-------------------------|------|---------|----------------|------|-----------------|--|-----|-------|-------|-------------|----------------|---------|-----------------|--| | φЕ | φD | Φd | Wall th | Wall thick. | | T+0.05
-0.15 | | φЕ | φD | φd | Wall thick. | | L ± 0.4 | T+0.05
-0.15 | | | 60 | 41 | 35.4 | 2.8 | | 42 | 3.5 | | 87 | 72 | 65.4 | 3.3 | | 63 | 4.5 | | | 70 | 44 | 40 | 2 | | 32 | 4.5 | | 95 | 72 | 65 | 3.5 | | 64 | 3.5 | | | 53 | 44 | 40 | 2 | | 37 | 4.5 | | 95 | 72 | 65 | 3.5 | | 72 | 4.5 | | | 53 | 44 | 40 | 2 | | 40 | 4.5 | | 108 | 72 | 65 | 3.5 | | 75 | 3.5 | | | 60 | 44 | 40 | 2 | | 39.5 | 4.5 | | 97 | 72 | 65 | 3.5 | | 77 | 3.5 | | | 60 | 46 | 40 | 2 | | 39.5 | 4.5 | | 97 | 77 | 70 | 3.5 | | 62 | 4.5 | | | 67 | 50 | 44.4 | 2.8 | -0.03
-0.08 | 37 | 4.7 | | 99 | 77 | 70 | 3.5 | -0.03
-0.08 | 82.5 | 4.5 | | | 70 | 54 | 50 | 2 | | 53 | 4.5 | | 112 | 77.25 | 70.35 | 3.45 | | 89.6 | 4.5 | | | 70 | 57 | 50 | 3.5 | | 45 | 4.5 | | 98 | 79 | 75 | 2 | | 74 | 4.5 | | | 70 | 57 | 50 | 3.5 | | 48 | 4.5 | | 98 | 82 | 75.4 | 3.3 | | 74 | 4.5 | | | 92 | 60.6 | 54.5 | 3.05 | | 59 | 4.5 | | 107 | 82 | 75.4 | 3.3 | | 80 | 4.5 | | | 85 | 62 | 55 | 3.5 | | 51 | 4.5 | | 112 | 89 | 85 | 2 | | 74.5 | 4.5 | | | 95 | 67 | 60 | 3.5 | | 67 | 3.5 | | 120 | 92 | 85.4 | 3.3 | | 82 | 4.5 | | | 87 | 69 | 65 | 2 | | 64.5 | 4.5 | | 125 | 94 | 90 | 2 | | 80 | 4.5 | | The above mentioned sizes are only for reference, CSB can produce the parts according to the customers drawings. ### Sizing type bushe inspection and tolerance recommend #### B: Sizing technical type bushes This type bushes can not be measured directly as the bushe fail to keep round under freedom, we normally recommend check the fitting pressure and wall thickness to control the products. The pressure data = $(3.1416xODxL)x(6-12kg/cm^2)$ For example: Bushe Φ 90/80x70x70 Theory contact area: 3.1416x8cmx7cm=176cm² Theory pressure: 176cm²x6kg/cm²=1056kg Standard wall thickness:-0.03/-0.08mm Mating tolerance: Housing-H7 Shaft-e7/f7 ### CSB450 Metric bushes Type: A 18 G .0.5 1×45° [IT6 A 1×45° 0.8/ Sliding direction Type: B 1×45° Order CSB450-18×37×50B ⊕ ⇔ ⇔ G L Type CuSn12 A Material Unit:mm | Туре | d | D | В | С | Е | F | G | L | M | N | Р | Housing | | |------|-------|------|-----|-----|-----|----|----------|-----|-------|---|------|-----------------------|--| | В | | | | 29 | | 8 | 18
37 | 31 | _ | 5 | | | | | | 18-19 | 28 | 34 | | | | 18 | 50 | | | 20.5 | 28 ^{+0.013} | | | А | | | | _ | 31 | _ | 27
18 | 70 | M6×1 | _ | | 20 0 | | | В | | | | 39 | | 12 | 23
42 | 36 | | 5 | | | | | | 24-25 | 38 | 44 | | | | 23 | 55 | | | 25.5 | 38 ^{+0.016} | | | А | 24 20 | 00 | | _ | 41 | — | 32 | 80 | M10×1 | _ | 20.0 | 30 ₀ | | | | | | | | | | 23
30 | 43 | | | | | | | В | | | | 48 | | 16 | 47 | 60 | _ | 5 | | | | | | 30-32 | 45 | 53 | | | | 26 | 60 | | | 31.5 | 45 ^{+0.016} | | | А | | | | _ | 50 | | 37
26 | 90 | M10×1 | _ | | | | | В | | 54 | 63 | 58 | | 19 | 38 | 51 | _ | 8 | | | | | | 40.40 | | | | | 10 | 54
30 | 67 | | | 20.5 | 54 ^{+0.019} | | | А | 40-42 | 54 | | _ | 60 | _ | 47 | 400 | M10×1 | | 36.5 | 54 0 | | | | | | | | | | 30 | 100 | | | | | | | В | | | | 74 | _ | 19 | 48
62 | 61 | | 8 | | | | | | 50-52 | 65 | 79 | | | | 35 | 75 | | | 44.5 | 65 ^{+0.019} | | | А | | | | _ | 76 | _ | 57 | 110 | M10×1 | — | | 00 0 | | | | | | | | | | 35
61 | 74 | | | | | | | В | | | | 87 | | 19 | 77 | 90 | | 8 | | . 0. 000 | | | | 63 | 81 | 92 | | 00 | | 48 | 90 | 14004 | | 51 | 81 ^{+0.022} | | | A | | | | | 89 | | 67
48 | 130 | M10×1 | | | | | | В | | | | 106 | | 19 | 78 | 91 | | 8 | | | | | | 80 | 100 | 111 | | | | 48 | 100 | | | 60.5 | 100 ^{+0.022} | | | А | | . 30 | | | 108 | | 77
48 | 150 | M10×1 | | 33.0 | 100 0 | | ## CSB450G/452G Metric bushes | Туре | d | [| O h4 | L | | | | | | | | | | | |----------|----|----|-------------|----|----|----|----|----|----|----|----|--|--|--| | | 10 | 16 | 0
-0.005 | 10 | 13 | 16 | 20 | 22 | 25 | | | | | | | CSB450G | 13 | 20 | | | 13 | 16 | 20 | 22 | 25 | | | | | | | CSB452G | 16 | 24 | 0
-0.006 | | |
16 | 20 | 22 | 25 | 30 | 35 | | | | | CSB452G | 20 | 28 | | | | | 20 | 22 | 25 | 30 | 35 | | | | | | 25 | 34 | 0
-0.007 | | | | 20 | 22 | 25 | 30 | 35 | | | | | | 10 | 16 | 0
-0.005 | 10 | 13 | 16 | 20 | 22 | 25 | | | | | | | CSB450GF | 13 | 20 | | | 13 | 16 | 20 | 22 | 25 | | | | | | | CSB452GF | 16 | 24 | 0
-0.006 | | | 16 | 20 | 22 | 25 | 30 | 35 | | | | | CSB452GF | 20 | 28 | | | | | 20 | 22 | 25 | 30 | 35 | | | | | | 25 | 34 | 0
-0.007 | | | | 20 | 22 | 25 | 30 | 35 | | | | ## JOCU-FC/JOCU-F Oilless unit parts JOCU-FC JOCU-F | | • • | | | |------|-----|---|--| | | | | | |
 | н. | m | | | Stanadard
No. | D
(pin diameter) | W | L | Н | W1 | BP | B
(Accessory) | KP | k | ВМ | E | h | С | Т | d | |------------------|---------------------|-----|-----|----|----|----|------------------|----|---------|-----|-----|-----|---|----|----| | | 8 | 41 | 44 | 24 | 33 | 12 | M3×30 | 25 | φ4×25 | M4 | 7.5 | 6.5 | 3 | 25 | 5 | | | 10 | 47 | 50 | 28 | 38 | 16 | M4×35 | 30 | ф5×25 | M5 | 8.5 | 6.5 | 3 | 32 | 6 | | | 12 | 53 | 60 | 36 | 42 | 20 | M6×50 | 40 | φ6×25 | M8 | 10 | 8 | 4 | 40 | 7 | | JOCU-FC | 25 | 75 | 85 | 48 | 62 | 40 | M8×65 | 65 | ф8×30 | M10 | 22 | 14 | 8 | 50 | 14 | | | 30 | 81 | 100 | 54 | 68 | 50 | M8×70 | 80 | ф8×30 | M10 | 27 | 15 | 8 | 60 | 14 | | | 35 | 100 | 115 | 60 | 80 | 50 | M10×80 | 85 | φ10×30 | M12 | 31 | 15 | 8 | 70 | 14 | | | 40 | 108 | 125 | 65 | 88 | 50 | M10×85 | 85 | ф 10×30 | M12 | 36 | 16 | 8 | 80 | 18 | | Stanadard
No. | D
(pin diameter) | W | L | Н | W1 | BP | B
(Accessory) | KP | k | ВМ | ВН | Е | h | С | Т | d | |------------------|---------------------|----|-----|----|----|----|------------------|----|-------|-----|------|----|----|---|----|----| | JOCU-F | 16 | 64 | 70 | 40 | 50 | 25 | M6×45 | 50 | ф6×25 | M8 | 33.5 | 13 | 10 | 6 | 45 | 9 | | | 20 | 76 | 75 | 46 | 60 | 30 | M8×55 | 55 | ф8×30 | M10 | 37.5 | 17 | 13 | 8 | 45 | 11 | | | 25 | 81 | 85 | 48 | 65 | 40 | M8×55 | 65 | ф8×30 | M10 | 39.5 | 22 | 14 | 8 | 50 | 14 | | | 30 | 88 | 100 | 54 | 72 | 50 | M8×60 | 80 | ф8×30 | M10 | 45.5 | 27 | 15 | 8 | 60 | 14 | # JOCU-MC/M Oilless unit parts ### Unit:mm | Standard
No. | D
(pin diameter) | W | L | Н | W1 | BP | B
(Accessory) | KP | k | ВМ | Е | h | С | Т | TH | N1 | N2 | NT | J | |-----------------|---------------------|-----|-----|----|----|----|------------------|----|---------|-----|----|----|---|----|------|----|----|-------|----| | | 25 | 75 | 85 | 48 | 62 | 40 | M8×65 | 65 | ф8×30 | M10 | 22 | 14 | 8 | 50 | 64 | 27 | 22 | 21.52 | 13 | | JOCU-MC | 30 | 81 | 100 | 54 | 68 | 50 | M8×70 | 80 | ф8×30 | M10 | 27 | 15 | 8 | 60 | 70 | 32 | 27 | 26 | 13 | | JOCO-IVIC | 35 | 100 | 115 | 60 | 80 | 50 | M10×80 | 85 | φ 10×30 | M12 | 31 | 15 | 8 | 70 | 73 | 36 | 32 | 28 | 13 | | | 40 | 108 | 125 | 65 | 88 | 50 | M10×85 | 85 | ф 10×30 | M12 | 36 | 16 | 8 | 80 | 79.5 | 41 | 38 | 29 | 17 | | Standard
No. | D
(pin diameter) | W | L | Н | W1 | BP | B
(Accesspry) | KP | k | ВМ | ВН | Е | h | С | Т | TH | N1 | N2 | NT | J | |-----------------|---------------------|----|-----|----|----|----|------------------|----|-------|-----|------|----|----|---|----|----|----|----|------|----| | | 16 | 64 | 70 | 40 | 50 | 25 | M6×45 | 50 | φ6×25 | M8 | 33.5 | 13 | 10 | 6 | 45 | 53 | 17 | 14 | 21 | 9 | | IOCU M | 20 | 76 | 75 | 46 | 60 | 30 | M8×55 | 55 | ф8×30 | M10 | 37.5 | 17 | 13 | 8 | 45 | 58 | 22 | 19 | 21 | 11 | | JOCU-M | 25 | 81 | 85 | 48 | 65 | 40 | M8×55 | 65 | ф8×30 | M10 | 39.5 | 22 | 14 | 8 | 50 | 64 | 27 | 22 | 21.5 | 13 | | | 30 | 88 | 100 | 54 | 75 | 50 | M8×60 | 80 | ф8×30 | M10 | 45.5 | 27 | 15 | 8 | 60 | 70 | 32 | 27 | 26 | 13 | ## JOCU Installation ## Installation method on molding ## Inclined pin Installation method ## **CSB-EP** Metric cylindrical bushes Recommend fitting tolerance: | d | f, | f ₂ | |--|-----|----------------| | d≤10 | 0.5 | 0.5 | | 10 <d≤30< th=""><th>0.8</th><th>0.5</th></d≤30<> | 0.8 | 0.5 | | 30 <d< th=""><th>1.2</th><th>0.5</th></d<> | 1.2 | 0.5 | Unit:mm | Designation | d
After fitting | D | L (h13) | Designation | d
After fitting | D | L (h13) | | | | | | | | | | | |-------------|---------------------------------------|--------------|---------|-------------|--|----|---------|--|--|--|--|--|---|------------|--------|----|----| | EP-0304-03 | | 3 EP-1214-06 | | | 6 | | | | | | | | | | | | | | EP-0304-05 | 3 +0.054
+0.014 | 4.5 | 5 | EP-1214-08 | | | 8 | | | | | | | | | | | | EP-0304-06 | | | 6 | EP-1214-10 | | | 10 | | | | | | | | | | | | EP-0405-04 | 4 +0.068 | 5.5 | 4 | EP-1214-12 | 12 ^{+0.102}
+0.032 | 14 | 12 | | | | | | | | | | | | EP-0405-06 | 4 +0.020 | 5.5 | 6 | EP-1214-15 | 3.002 | | 15 | | | | | | | | | | | | EP-0507-05 | | | 5 | EP-1214-20 | | | 20 | | | | | | | | | | | | EP-0507-08 | 5 ^{+0.068} _{+0.020} | 7 | 8 | EP-1214-25 | | | 25 | | | | | | | | | | | | EP-0507-10 | | | 10 | EP-1416-15 | | | 15 | | | | | | | | | | | | EP-0608-06 | | | 6 | EP-1416-20 | 14 ^{+0.102}
+0.032 | 16 | 20 | | | | | | | | | | | | EP-0608-08 | 6 ^{+0.068}
+0.020 | 8 | 8 | EP-1416-25 | 5332 | | 25 | | | | | | | | | | | | EP-0608-10 | | | 10 | EP-1517-10 | | | 10 | | | | | | | | | | | | EP-0810-06 | | | 6 | EP-1517-15 | 15 ^{+0.102} _{+0.032} | 17 | 15 | | | | | | | | | | | | EP-0810-08 | | | 8 | EP-1517-20 | +0.032 | 17 | 20 | | | | | | | | | | | | EP-0810-10 | 8 ^{+0.083}
+0.025 | 10 | 10 | EP-1517-25 | | | 25 | | | | | | | | | | | | EP-0810-12 | | | 12 | EP-1618-12 | | | 12 | | | | | | | | | | | | EP-0810-15 | | | 15 | EP-1618-15 | 16 ^{+0.102} _{+0.032} | 18 | 15 | | | | | | | | | | | | EP-1012-04 | | | | | | | | | | | | | 4 | EP-1618-20 | +0.032 | 10 | 20 | | EP-1012-06 | | | 6 | EP-1618-25 | | | 25 | | | | | | | | | | | | EP-1012-08 | | | 8 | EP-1820-15 | . 0. 400 | | 15 | | | | | | | | | | | | EP-1012-10 | 10 +0.083 | 12 | 10 | EP-1820-20 | 18 ^{+0.102}
+0.032 | 20 | 20 | | | | | | | | | | | | EP-1012-12 | +0.025 | 12 | 12 | EP-1820-25 | | | 25 | | | | | | | | | | | | EP-1012-15 | | | 15 | EP-2023-15 | | | 15 | | | | | | | | | | | | EP-1012-18 | | | 18 | EP-2023-20 | 20 ^{+0.124}
+0.040 | 23 | 20 | | | | | | | | | | | | EP-1012-20 | | | 20 | EP-2023-23 | | | 23 | | | | | | | | | | | Material: EP,EP1,EP2...EP10 # CSB-EP Metric cylindrical bushes ### Unit:mm | | | | | | | | Unit:mm | |-------------|--------------------------------|----|---------|---------------|---|-----|---------| | Designation | d
After fitting | D | L (h13) | Designation | d
After fitting | D | L (h13) | | EP-2023-25 | 20 +0.124 | 23 | 25 | EP-4550-30 | 45 +0.150 | 50 | 30 | | EP-2023-30 | +0.040 | 25 | 30 | EP-4550-50 | ⁴⁵ +0.050 | 30 | 50 | | EP-2225-15 | | | 15 | EP-5055-20 | | | 20 | | EP-2225-20 | ₂₂ +0.124 | 25 | 20 | EP-5055-30 | 50 +0.150 | 55 | 30 | | EP-2225-25 | 22 ^{+0.124}
+0.040 | 20 | 25 | EP-5055-40 | +0.050 | | 40 | | EP-2225-30 | | | 30 | EP-5055-50 | | | 50 | | EP-2528-12 | | | 12 | EP-5560-40 | 55 ^{+0.180}
+0.060 | 60 | 40 | | EP-2528-15 | | | 15 | EP-5560-60 | +0.060 | 00 | 60 | | EP-2528-20 | 25 ^{+0.124}
+0.040 | 28 | 20 | EP-6065-40 | 60 ^{+0.180}
+0.060 | 65 | 40 | | EP-2528-25 | | | 25 | EP-6065-50 | +0.060 | 0.5 | 50 | | EP-2528-30 | | | 30 | EP-6570-50 | 65 ^{+0.180} _{+0.060} | 70 | 50 | | EP-2832-20 | | | 20 | EP-7075-60 | 70 ^{+0.180} _{+0.060} | 75 | 60 | | EP-2832-25 | 28 ^{+0.124}
+0.040 | 32 | 25 | EP-7580-60 | 75 ^{+0.180} _{+0.060} | 80 | 60 | | EP-2832-30 | | | 30 | EP-8085-100 | 80 ^{+0.180}
+0.060 | 85 | 100 | | EP-3034-20 | | | 20 | EP-8590-100 | 85 ^{+0.212}
+0.072 | 90 | 100 | | EP-3034-25 | 30 ^{+0.124}
+0.040 | 34 | 25 | EP-9095-100 | 90 ^{+0.212}
+0.072 | 85 | 100 | | EP-3034-30 | +0.040 | 34 | 30 | EP-95100-100 | 95 ^{+0.212}
+0.072 | 100 | 100 | | EP-3034-40 | | | 40 | EP-100105-100 | 100 ^{+0.212}
+0.072 | 105 | 100 | | EP-3236-20 | | | 20 | EP-110115-100 | 110 ^{+0.212} _{+0.072} | 115 | 100 | | EP-3236-30 | 32 ^{+0.150}
+0.050 | 36 | 30 | EP-120125-100 | 120 ^{+0.212}
+0.072 | 125 | 100 | | EP-3236-40 | | | 40 | EP-125130-100 | 125 ^{+0.245}
+0.085 | 130 | 100 | | EP-3539-20 | | | 20 | EP-130135-100 | 130 ^{+0.245}
+0.085 | 135 | 100 | | EP-3539-25 | | | 25 | EP-140145-100 | 140 ^{+0.245}
+0.085 | 145 | 100 | | EP-3539-30 | 35 ^{+0.150}
+0.050 | 39 | 30 | EP-150155-100 | 150 ^{+0.245}
+0.085 | 155 | 100 | | EP-3539-40 | | | 40 | | | | | | EP-3539-50 | | | 50 | | | | | | EP-4044-20 | | | 20 | | | | | | EP-4044-30 | 40 ^{+0.150}
+0.050 | 11 | 30 | | | | | | EP-4044-40 | +0.050 | 44 | 40 | | | | | | EP-4044-50 | | | 50 | | | | | ## **CSB-EPF** Metric flange bushes | d | f ₁ | |--------------------------------------|----------------| | d≤10 | 0.5 | | 10 <d≤30< td=""><td>0.8</td></d≤30<> | 0.8 | | 30 <d< td=""><td>1.2</td></d<> | 1.2 | Unit:mm 13) ℓ_1 -0.14 | Designation | d₁
After fitting | d ₂ | d₃(d13) | L(h13) | <i>ℓ</i> ₁ -0.14 | Designation | d₁
After fitting | d ₂ | d ₃ (d13) | L(h1 | |-------------|---------------------|----------------|---------|--------|-----------------------------|-------------|---------------------|----------------|----------------------|------| | EPF-0304-03 | 2 +0.054 | 4.5 | 7.5 | 3 | | EPF-1517-09 | | | | 9 | | EPF-0304-05 | 3 _{+0.014} | 4.5 | 7.5 | 5 | | EPF-1517-12 | 4 - +0.102 | 47 | 22 | 12 | | EPF-0304-03 | 3 ^{+0.054} +0.014 | 4.5 | 7.5 | 3 | | EPF-1517-09 | | | | 9 | | |-------------|--|-----|-----|-----|------|-------------|--|------|----|------|-----| | EPF-0304-05 | 3 +0.014 | 4.5 | 7.5 | 5 | | EPF-1517-12 | 15 ^{+0.102} _{+0.032} | 17 | 23 | 12 | | | EPF-0405-03 | | | | 3 | 0.75 | EPF-1517-17 | +0.032 | 17 | 25 | 17 | | | EPF-0405-04 | 4 +0.068 +0.020 | 5.5 | 9.5 | 4 | | EPF-1517-20 | | | | 20 | 1 | | EPF-0405-06 | | | | 6 | | EPF-1618-12 | 16 ^{+0.102}
_{+0.032} | 18 | 24 | 12 | | | EPF-0507-04 | 5 ^{+0.068} _{+0.020} | 7 | 11 | 4 | | EPF-1618-17 | 10 +0.032 | 10 | 24 | 17 | | | EPF-0507-05 | J +0.020 | ' | 11 | 5 | | EPF-1820-12 | | | | 12 | | | EPF-0608-04 | | | | 4 | | EPF-1820-17 | 18 ^{+0.102} _{+0.032} | 20 | 26 | 17 | | | EPF-0608-06 | 6 +0.068 +0.020 | 8 | 12 | 6 | | EPF-1820-20 | | | | 20 | | | EPF-0608-08 | +0.020 | | 12 | 8 | | EPF-2023-11 | | | | 11.5 | | | EPF-0608-10 | | | | 10 | | EPF-2023-16 | 20 +0.124 +0.040 | 23 | 30 | 16.5 | | | EPF-0810-05 | | | | 5.5 | | EPF-2023-21 | | | | 21.5 | 1.5 | | EPF-0810-07 | 8 +0.083 +0.025 | 10 | 15 | 7.5 | | EPF-2528-11 | | | | 11.5 | 1.5 | | EPF-0810-09 | | | | 9.5 | | EPF-2528-16 | 25 ^{+0.124} _{+0.040} | 28 | 35 | 16.5 | | | EPF-1012-07 | | | | 7 | | EPF-2528-21 | | | | 21.5 | | | EPF-1012-09 | | | | 9 | | EPF-3034-16 | | | | 16 | | | EPF-1012-10 | 10+0.083 | 12 | 18 | 10 | | EPF-3034-26 | 30 +0.124 +0.040 | 34 | 42 | 26 | | | EPF-1012-12 | 10+0.025 | 12 | 10 | 12 | | EPF-3034-37 | | | | 37 | | | EPF-1012-15 | | | | 15 | | EPF-3236-16 | 32 ^{+0.150} _{+0.050} | 36 | 40 | 16 | | | EPF-1012-17 | | | | 17 | 1 | EPF-3236-26 | 3Z +0.050 | 30 | 70 | 26 | | | EPF-1214-07 | | | | 7 | | EPF-3539-16 | 35 ^{+0.150} _{+0.050} | 39 | 47 | 16 | 2 | | EPF-1214-09 | | | | 9 | | EPF-3539-26 | | - 00 | 7, | 26 | | | EPF-1214-10 | | | | 10 | | EPF-3842-22 | 38 +0.150 +0.050 | 42 | 54 | 22 | | | EPF-1214-12 | 12 ^{+0.102} _{+0.032} | 14 | 20 | 12 | | EPF-4044-30 | 40 +0.150 | 44 | 52 | 30 | | | EPF-1214-15 | | | | 15 | | EPF-4044-40 | | | 52 | 40 | | | EPF-1214-17 | | | | 17 | | EPF-4550-50 | 45 +0.150 +0.050 | 50 | 58 | 50 | | | EPF-1214-20 | | | | 20 | | EPF-5055-40 | 50 ^{+0.150}
+0.050 | 55 | 63 | 40 | | | EPF-1416-10 | | | | 10 | | EPF-5055-50 | | 33 | 03 | 50 | | | EPF-1416-12 | 14 ^{+0.102} _{+0.032} | 16 | 22 | 12 | | EPF-6065-50 | 60 +0.180 +0.060 | 65 | 73 | 50 | | | | | | | | | | | | | | | Material: EP,EP1,EP2...EP10 EPF-1416-17 # **CSB-EPF** Metric flange bushes ### Unit:mm | Designation | d₁
After fitting | d ₂ | d ₃ (d13) | L(h13) | <i>ℓ</i> ₁-0.14 | Designation | d₁
After fitting | d ₂ | d ₃ (d13) | L(h13) | ℓ₁-0.14 | |---------------|--|----------------|----------------------|--------|-----------------|----------------|---|----------------|----------------------|--------|---------| | EPF-6570-50 | 65 +0.180 +0.060 | 70 | 78 | 50 | | EPF-100105-100 | 100 +0.212 +0.072 | 105 | 113 | 100 | | | EPF-7075-50 | 70 +0.180 +0.060 | 75 | 83 | 50 | 2 | EPF-110115-100 | 110 +0.212 +0.072 | 115 | 123 | 100 | | | EPF-7580-50 | 75 ^{+0.180} _{+0.060} | 80 | 88 | 50 | | EPF-120125-100 | 120 +0.212 +0.072 | 125 | 133 | 100 | | | EPF-8085-100 | 80 +0.180 +0.060 | 85 | 93 | 100 | | EPF-125130-100 | 125 +0.245 +0.085 | 130 | 138 | 100 | 2.5 | | EPF-8590-100 | 85 ^{+0.212} _{+0.072} | 90 | 98 | 100 | 2.5 | EPF-130135-100 | 130 +0.245 +0.085 | 135 | 143 | 100 | | | EPF-9095-100 | 90 +0.212 +0.072 | 95 | 103 | 100 | 2.5 | EPF-140145-100 | 140 +0.245 +0.085 | 145 | 153 | 100 | | | EPF-95100-100 | 95 +0.212 +0.072 | 100 | 108 | 100 | | EPF-150155-100 | 150 ^{+0.245} _{+0.085} | 155 | 163 | 100 | | ## **Metric thrust washer** Unit:mm | Designation | | Wash | er Dim. | | Fitting Dim. | | | | | |--------------|---------|---------|---------|---------------|--------------|-------|---------|--|--| | Designation | d +0.25 | D -0.25 | T -0.05 | $M \pm 0.125$ | h +0.1~+0.4 | t±0.2 | D₁+0.12 | | | | EPW-0818-015 | 8 | 18 | | 13 | | | 18 | | | | EPW-1018-015 | 10 | 18 | | 15 | 1.5 | | 20 | | | | EPW-1224-015 | 12 | 24 | | 18 | | | 24 | | | | EPW-1426-015 | 14 | 26 | | 20 | | | 26 | | | | EPW-1630-015 | 16 | 30 | | 23 | 2 | | 30 | | | | EPW-1832-015 | 18 | 32 | | 25 | | | 32 | | | | EPW-2036-015 | 20 | 36 | 1.5 | 28 | 3 | 1 | 36 | | | | EPW-2238-015 | 22 | 38 | | 30 | | | 38 | | | | EPW-2442-015 | 24 | 42 | | 33 | | | 42 | | | | EPW-2644-015 | 26 | 44 | | 35 | | | 44 | | | | EPW-2848-015 | 28 | 48 | | 38 | | | 48 | | | | EPW-3254-015 | 32 | 54 | | 43 | | | 54 | | | | EPW-3862-015 | 38 | 62 | | 50 | | | 62 | | | | EPW-4266-015 | 42 | 66 | | 54 | 4 | | 66 | | | | EPW-4874-020 | 48 | 74 | | 61 | | | 74 | | | | EPW-5278-020 | 52 | 78 | 2 | 65 | | 1.5 | 78 | | | | EPW-6290-020 | 62 | 90 | | 76 | | | 90 | | | Material: EP,EP1,EP2...EP10 #### Influences on the service life: Wear and service life of the CSB slide bearings are dependent on the following: - Specific bearing load - Sliding speed - PV value - Roughness depth of the mating surface - Mating surface material and - Temperature etc. and so on During running-in, some of the surface of the PTFE/Pb or solid lubricants is transferred to the mating surface. A running surface is formed which has low coefficient of friction and this has a positive effect on the operating behaviours. For 3-layer dry bearings, after running-in, some of the porous bronze layer can be seen on the sliding layer as individual areas of different size. This shows that the bearing is functioning correctly. ### **PV** value The PV value has a considerable influence on the bearing service life. It is the product of the specific load P and the sliding speed V and the PV is very important design data, we recommend design lower PV value will leads to a longer service life. ## **Direction of Motion and PV Value** | | | Bearing
Pressure
P N/mm²
{kgf/cm²} | Velocity V
m/s
{m/min} | PV Value
N/mm²*m/s
{kgf/cm²*m/min} | |---|---------------------------|--|---|--| | Rotating motion in single direction of radial journal | Bushing | $ \frac{\frac{F}{dL}}{\frac{10^2F}{dL}} $ | $\frac{\frac{\pi \ dn}{10^3}}{\left\{\frac{\pi \ dn}{10^3}\right\}}$ | $\frac{\frac{\pi Fn}{10^3L}}{\frac{\pi Fn}{10L}}$ | | 2. Oscillating motion | F
Bushing | $ \frac{\frac{F}{dL}}{\left\{\frac{10^2F}{dL}\right\}} $ | $\frac{\frac{dc \theta}{10^3}}{\left\{\frac{\pi dc \theta}{180 \times 10^3}\right\}}$ | $\frac{\frac{\text{Fc }\theta}{10^{3}\text{L}}}{\left\{\frac{\pi \text{ Fc }\theta}{180\times 10^{2}\text{L}}\right\}}$ | | 3. Reciprocating motion | Bushing | $\frac{\frac{F}{dL}}{\left\{\frac{10^2F}{dL}\right\}}$ | $ \frac{2cS}{10^{3}} \\ \frac{2cS}{10^{3}} $ | $ \frac{2FcS}{10^{3}dL} $ $ \left\{\frac{FcS}{5dL}\right\} $ | | 4. Thrust motion | Rotation | $\begin{array}{c} \frac{4F}{\pi \left(D^{2}\text{-}d^{2}\right)} \\ \left\{ \frac{400F}{\pi \left(D^{2}\text{-}d^{2}\right)} \right. \end{array} \right\}$ | $\frac{\pi \underline{D} \underline{n}}{10^3} \\ \left\{ \frac{\pi \underline{D} \underline{n}}{10^3} \right\}$ | $\frac{\frac{4FDn}{10^{3}(D^{2}-d^{2})}}{\left\{\frac{4FDn}{10(D^{2}-d^{2})}\right\}}$ | | | Oscillation Thrust washer | $\frac{4F}{\pi (D^2 \! - \! d^2)} \\ \left\{ \frac{400F}{\pi (D^2 \! - \! d^2)} \right\}$ | $\frac{\frac{\text{Dc }\theta}{10^3}}{\left\{\frac{\pi \text{ Dc }\theta}{180\times 10^3}\right\}}$ | $\frac{\frac{4 FDc \; \theta}{10^3 \; \pi \; (D^2 \! - \! d^2)}}{\frac{4 FDc \; \theta}{180 \times 10 (D^2 \! - \! d^2)}} \bigg\}$ | | 5. Plane reciprocating motion | Plate | $ \frac{F}{BL} $ $ \left\{ \frac{10^2 F}{WL} \right\} $ | $\frac{\frac{2cS}{10^3}}{\left\{\frac{2cS}{10^3}\right\}}$ | $ \frac{2FcS}{10^{3}BL} $ $ \left\{\frac{FcS}{5WL}\right\} $ | | F | : Vertical load | N {kgf | |---|-----------------------------------|----------------------------| | | : Number of rotation | ····· S ⁻¹ {rpm | | С | : Cylic velocity of reciprocating | | | | or oscillating motion | | | S | : Stroke distance | m {mm | | | : Oscillating angle | | | d | : Bearing ID | mm {mm | | | : Bearing OD | | | L | : Bearing length | mm {mm | | W | : Bearing width | ·····mm {mm | | | | | ### **Bearing Load** In general, the bearing pressure is obtained by dividing the max. load imposed on the bearing by the pressure supporting area of the bearing. The pressure supporting area is defined as the projected loading area which contacts with the shaft, projected in the direction of the load in cases of a cylindrical and spherical bearings. Application factor --- ## Type of load ## **Velocity** The main cause of generated heat is the work done at the friction surface of the bearing. It is known from experience that the rise in temperature at the friction surface is affected more by the velocity than by the pressure. With the same PV value, the larger V value is, the high bearing temperature will be. When used in a high velocity operation, it is recommended that the bearings should be designed and used in such a manner that the co-efficient of friction be reduced by positive supply of oil to enhance both cooling and lubricating effectiveness, in order to take advantage of their wear resistance. Application factor → ### **Oscillating Motion** The oscillating motion is considered to be one of the most severe conditions to bearings zero velocity in each cycle of motion. Oil film is liable to be disrupted, fatigue and wear of material be accelerated and wear particles tend to remain longer. The ball bearing which are designed mainly for rotational motion have a very small contact area causing, extreme high contact stress to develop at their pressure supporting areas. They are, thus, unsuitable for oscillating motion because which have large contact sleeve bearings which have large contact area are generally considered better for this application. CSB self-lubricating bearings are the most adequate bearings for oscillating motion having a very tough sliding surface which generates little wear particles, and being an
oil-containing type which will not cause noise due to disruption of oil film. ### Operation intervals Operation may either be continuous or intermittent. Intermittent operations can be advantageous for general type bearings because of intervals which allows generated friction heat to cool down. This enables a PV value to remain relatively high. The disadvantage of intermittent operations is that frequent operational interruptions tend to cause inadequate amount. Moreover, resulting in increasing wear occur when restarting. The heavy load imposed in an intermittent operation is liable to cause boundary lubrication condition. A bearing should be selected which safely endures friction and wear in that condition. Oil-containing bearings self-supply lubricant oil to the sliding surface, and exhibit excellent lubricant-maintaining capability. CSB650# in particular has a high load carrying capacity and displays excellent performance in intermittent operations with high load because of the tough film of solid lubricants covers the sliding surface. ### **Bearing Temperature** The life of a bearing is greatly influenced by environment temperature and friction heat that is generated from oscillating and reciprocating motion. For a high temperature application, the PV value of the bearing should be limited to a small value. The heat resistance of plastic bearings are generally inferior to that of metallic bearings. In particular thermoplastic resins poor resistance to heat. They also have high thermal expansion rate. Consequently to maintain a min. Required clearance, careful dimensional control is necessary when the bearings of these materials are designed. ## **BEARINGS DIMENSIONAL INSPECTION** The wrapped or thin wall bushes are not accurately mensurable in the unfitted condition. Here we list the standard measurement method. ## Testing the outside diameter The outside diameter of CSB wrapped plain bearings that have to have the interference fit (press fit) in the housing are tested with the aid of a special device. In this test the outside diameter is measured under prestressing force according to DIN 1494, part 2, test A to determine the deviation Delta Z from a standard value. Test load and permissible deviation are calculated according to DIN 1494. Normally this method is suitable for large series. The simplified method for testing the outside diameter of plain bearings is based on DIN 1494 Method B. The test uses GO and NO GO ring gauge. The corresponding diameters of the GO and NO GO ring gauges are selected according to the DIN standard. Normally this method is suitable for smaller series. ## Testing the inside diameter The inside diameter is tested according to DIN1494, part 2, test C. To perform this test, the bushes should be fixed in a ring gauge (table 5 according to DIN1494 part 1) in this condition the inside diameter can be tested with GO or NO GO plug gauges. Normally this method is suitable for smaller series. The big size bushes recommend use of a three-point micrometer is preferable. ## **Testing the thrust washer** Beside the thickness, the flatness of a washer is of particular importance as it has impact on the life of both the washer and its mate. We use very helpful test in which the washer falls through the gap between two plain parallel plates of a gauge under its dead weight. The plates must be big enough to cover the whole washer. # **BEARINGS DIMENSIONAL INSPECTION** Machined bushing like CSB650#, CSB600#, CSB450#, CSB200 etc are high-precision parts. Therefore precision equipment is needed to check them. Here we list the popular check method. The tester used to check a bushing depends on the quality standard and the number of bushings involved. | RESULTS | Filt. Type | 2CR | |-----------|--|--| | JDB3 | Filter | 1-50 upr | | 3.81 um | No. Planes | 2 | | 5.25 um | Profile | 100.0% | | 2.39 um | Meas mode | External | | 3.19 um | Phase | 240.4 deg | | 126.0 deg | Angle | 89.996 deg | | | Meas. date | 29-04-2001 | | 1.00 um | Meas. Time | 15:07:48 | | SPINDLE | | | | | JDB3 3.81 um 5.25 um 2.39 um 3.19 um 126.0 deg | JDB3 Filter 3.81 um No. Planes 5.25 um Profile 2.39 um Meas mode 3.19 um Phase 126.0 deg Angle Meas. date 1.00 um Meas. Time | | LS ROUNDNES | S RESULTS | Datum | SPINDLE | |--------------|-----------|-------------|------------| | Feature name | JDB2 | Filter type | 2CR | | Feature no. | 03 | Filter | 1-50 upr | | R | 29.639 um | Profile | 100.0% | | 0 | 1.58 um | Meas mode | External | | E | 17.06 um | Meas. Date | 29-04-2001 | | _ | 234.1 deg | Meas. Time | 14:31:18 | | 7 | 34.52um | | | | Scale | 1.00 um | | | | Z height | 76.5 mm | | | | LS CYLINDER | RESULTS | Filter type | 2CR | |--------------|-----------|-------------|------------| | Feature name | JDB2T1 | Filter | 1-50 upr | | 4 | 1.71 um | No. Planes | 2 | | 27 | 40.03 um | Profile | 100.0% | | ① ISO | 39.85 um | Meas mode | External | | Max par val | -0.75 um | Phase | 241.7 deg | | Max par ang | 153.0 deg | Angle | 89.976 deg | | | | Meas. date | 29-04-2001 | | Scale | 1.00 um | Meas. Time | 14:37:58 | | Datum | JDB2T | | | | LS CYLINDER | RESULTS | Filt. Type | 2CR | |--------------|-----------|------------|------------| | Feature name | JDB3 | Filter | 1-50 upr | | ♦ | 3.81 um | No. Planes | 2 | | 21 | 5.25 um | Profile | 100.0% | | | | Meas mode | External | | Max par val | 3.19 um | Phase | 240.4 deg | | Max par ang | 126.0 deg | Angle | 89.996 deg | | | | Meas. date | 29-04-2001 | | Scale | 1.00 um | Meas. Time | 15:07:48 | | Datum | SPINDLE | | | | LS CYLINDER | RESULTS | Filt. Type | 2CR | |--------------|----------|------------|------------| | Feature name | JDB3 | Filter | 1-50 upr | | \$ | 13.78 um | No. Planes | 2 | | 21 | 13.48 um | Profile | 100.0% | | ① ISO | 0.9 um | Meas mode | External | | Max par val | 13.16 um | Phase | 246.1 deg | | Max par ang | 78.0 deg | Angle | 89.994 deg | | | | Meas. date | 29-04-2001 | | Scale | 2.00 um | Meas. Time | 15:12:47 | | Datum | SPINDLE | | | | LS CYLINDER | RESULTS | Filt. type | 2CR | |--------------|-----------|------------|------------| | Feature name | JDB2T | Filter | 1-50 upr | | \$ | 2.05 um | No. Planes | 2 | | 21 | 35.39 um | Profile | 100.0% | | | | Meas mode | External | | Max par val | -1.07 um | Phase | 235.7 deg | | Max par ang | 177.0 deg | Angle | 89.942 deg | | | | Meas. date | 29-04-2001 | | Scale | 1.00 um | Meas. Time | 14:34:02 | | Datum | SDINIDI E | | | | LS ROUNDNES | SS RESULTS | |--------------|------------| | Feature name | JDB2 | | Feature num | 04 | | R | 29.639 mm | | 0 | 2.19 um | | E | 16.12 um | | _ | 234.2 deg | | 7 | 32.64 um | | Scale | 0.50 um | | Z height | 74.5 mm | | Datum | SPINDLE | | Filter type | 2CR | | Filter | 1-50 upr | | Profile | 100.0 % | | Meas mode | External | | Meas. date | 29-04-2001 | | Meas. Time | 14:31:52 | | | | | | | | | | | LS ROUNDNES | SS RESULTS | |--------------|------------| | Feature name | JDB3 | | Feature num | 00 | | R | 33.476 mm | | 0 | 2.51 um | | E | 1.19 um | | _ | 219.6 deg | | 7 | 4.60 um | | Scale | 1.00 um | | Z height | 67.5 mm | | Datum | SPINDLE | | Filter type | 2CR | | Filter | 1-50 upr | | Profile | 100.0 % | | Meas mode | External | | Meas. date | 29-04-2001 | | Meas. time | 15:07:48 | | | | | | | | | | | LS CYLINDER | RESULTS | Datum | SPINDLE | |--------------|-----------|------------|------------| | Feature name | JDB3 | Filt. type | 2CR | | Feature no. | 01 | Filter | 1-50 upr | | R | 33.475 mm | Profile | 100.0% | | 0 | 3.09 um | Meas mode | External | | E | 0.46 um | Meas. date | 29-04-2001 | | _ | 129.8 deg | Meas. Time | 14:59:36 | | 7 | 3.45 um | | | | Scale | 2.00 um | | | | Z height | 49.1 mm | | | # **DESIGN OF BEARING ARRANGEMENTS** ## Housing #### **Bushes** The housing bore should have a chamfer $f_{\rm e}x20^{\circ}\pm5^{\circ},$ This chamfer makes it easier to press the bushes into the housing. | Housing bore
diameter d _s | Chamfer with f _o | |---|-----------------------------| | d _G ≤30 | 0.8±0.3 | | 30 <d<sub>s≤80</d<sub> | 1.2±0.4 | | 80 <d<sub>g≤180</d<sub> | 1.8±0.8 | | 180 <d<sub>G</d<sub> | 2.5±1.0 | ### Flange Bushes The radius at the transition from the radial to the axial component must be taken into consideration for flange bushes. A sufficiently large chamfer must be provided on the housing to prevent the flanged bushes fouling in the area of the radius. Sufficient support must be provided for the flange in applications with axial loading. | Housing bore
diameter d _e | Chamfer with f _g | |---|-----------------------------| | d _g ≤10 | 1.2±0.2 | | 10 <d<sub>G</d<sub> | 1.7±0.2 | ## **DESIGN OF BEARING ARRANGEMENTS** ### **Shaft** To make fitting easier, the shaft ends should be chamfered. All sharp edges which could damage the sliding layer must be broken. Higher surface qualities will extend the service life only slightly whereas greater roughness depths will reduce the service life considerably. Ground or drawn surfaces are preferred. The surface finish of the mating material should be between Ra 0.2-Ra0.8 um obtained by grinding normally. #### incorrect #### correct ### **Seals** If increased levels of contamination occur or the bearing is used in an aggressive environment, the bearing position should be protected. The usual solution is to design the surrounding structure so that the contamination cannot reach the bearing position. A collar of grease may also be used or shaft seals if the level of contamination is particularly high. ## BEARINGS INSTALLATION #### **Bushes** In most cases, CSB slide bearings are used with a pressfit in the same manner as general sleeve bearings. Fit the bearings into housings using mandrels or press. In case of a relatively large
interference, provide both the I.D. of the housing and the O.D. of the bearing with chamfers, and fit the bearing into the housing with mandrel for easy installation. When using plastic bearings in an environment where temperature fluctuates, install the bearings using set screws, keys or flange pins for better results. For some special application like CSB650# bushes for injection molding machines, can be used shrink fitting. This is the preferred method of inserting a bush in its housing and provides the optimum interference fit without risking bearing damage during press fitting. Frozen carbon dioxide (Co_2) should be packed around the bearing for up to 2 hours, depending on the cross section of bush to be cooled. Once removed from the Co_2 , the bush should be offered to its housing without delay. It should fit without force, gravity will usually be adequate for a vertical installation. - d≥55mm - 1. Pressing-in arbor - 2. Bushes - 3. Housing - 4. Shoulder diameter - 5. Auxiliary ring - 6. O ring | d ₂ mm | d _н mm | |---|-------------------------------| | 55 ≤ d₂ ≤ 100 | d ₂ +0.28
+0.25 | | 100 <d₂ 200<="" th="" ≤=""><th>$d_{2}^{+0.40}_{+0.36}$</th></d₂> | $d_{2}^{+0.40}_{+0.36}$ | | 200 <d₂≤305< th=""><th>d₂ +0.50
+0.46</th></d₂≤305<> | d ₂ +0.50
+0.46 | ## **BEARINGS INSTALLATION** At the on-start of operation, contact surfaces of shaft and bearings are smooth, however, microscopic irregularities are inevitable to develop after continued use. A deviation from true center alignment may also exist. Thus, the initial contact between sliding surface could be local. Do not immediately start a regular loaded operation, it may result in damaging the gearing surface, leading to a shorter service life. Instead, gradually break-in operations so to smooth out the microscopic irregularities, and allow the entire pressure support area to slowly come in contact without causing damage. #### **Storage** CSB slide bearings are supplied packed in boxes or in a bag in a box. The bearings should be stored in clean, rust proof manner. The thin wall bearings like EP should be protected from deformation during storage. Do not store in locations exposed to high temperatures, high humidity, or the direct rays of the sun, and do not place under a heavy load also. Initial operation ### Thrust washers and plate We recommended to provide housing with hollowed dents for installing thrust washers and sliding plates. Dowel pins should be applied to prevent turning. #### 1. Dowel pin application(thrust washer) #### 2. Inlaid installation(plate) #### 3. Flat head screw application ## Alternative fixing methods Laser welding, adhesive fixing or soft soldering have also been used for economical alternative fixing if the interference fit on the bush is not sufficient or it is uneconomical to use dowel pins or screws for trust washer and plate. When using laser welding or other higher temperature manners should be considering not exceed the max. slide layer temp. Can be bear. The sliding layer must always be kept free from adhesives. # SHAFT TOLERANCE TABLE (ISO) | | n | ıt٠ | m | m | |---|---|-----|---|---| | U | | IL. | Un | it:mm | | | | | | | | | | | | | | | |----------|--------|--------------|--------------|--------------|--------------|-------------|------------|-------------|------------|------------|----------|----------|----------|------------|------------|------------|-------------|-------------|--------------|--------------|----------|--------------|------------|--|---|--|--|--|--|------|------|------|----------|-----------| | \ | \vee | c9 | d8 | e7 | e8 | f7 | g6 | h5 | h6 | h7 | h8 | js6 | js7 | k6 | m6 | n6 | p6 | p7 | r6 | s6 | | | | | | | | | | | | | | | | _ | 3 | -60
-85 | -20
-34 | -14
-24 | -14
-28 | -6
-16 | -2
-8 | 0
-4 | 0
-6 | 0
-10 | 0
-14 | ±3 | ±5 | +6
0 | +8
+2 | +10
+4 | +12
+6 | +16
+6 | +16
+10 | +20
+14 | | | | | | | | | | | | | | | | 3 | 6 | -70
-100 | -30
-48 | -20
-32 | -20
-38 | -10
-22 | -4
-12 | 0
-5 | 0
-8 | 0
-12 | 0
-18 | ±4 | ±6 | +9
+1 | +12
+4 | +16
+8 | +20
+12 | +24
+12 | +23
+15 | +27
+19 | | | | | | | | | | | | | | | | 6 | 10 | -80
-116 | -40
-62 | -25
-40 | -25
-47 | -13
-28 | -5
-14 | 0
-6 | 0
-9 | 0
-15 | 0
-22 | ±4.5 | ±7 | +10
+1 | +15
+6 | +19
+10 | +24
+15 | +30
+15 | +28
+19 | +32
+23 | | | | | | | | | | | | | | | | 10 | 18 | -95
-138 | -50
-77 | -32
-50 | -32
-59 | -16
-34 | -6
-17 | 0
-8 | 0
-11 | 0
-18 | 0
-27 | ±5.5 | ±9 | +12
+1 | +18
+7 | +23
+12 | +29
+18 | +36
+18 | +34
+23 | +39
+28 | | | | | | | | | | | | | | | | 18 | 24 | -110 | -65 | -40 | -40 | -20 | -7 | 0 | 0 | 0 | 0 | ±6.5 | ±10 | +15 | +21 | +28 | +35 | +43 | +41 | +48 | | | | | | | | | | | | | | | | 24 | 30 | -162 | -98 | -61 | -73 | -41 | -20 | -9 | -13 | -21 | -33 | 0.0 | = 10 | +2 | +8 | +15 | +22 | +22 | +28 | +35 | | | | | | | | | | | | | | | | 30 | 40 | -120
-182 | -80
-119 | -80 | | -50 | -50 | -25 | -9 | 0 | 0 | 0 | 0 | ±8 | ±12 | +18 | +25 | +33 | +42 | +51 | +50 | +59 | | | | | | | | | | | | | | 40 | 50 | -130
-192 | | -75 | -89 | -50 | -25 | -11 | -16 | -25 | -39 | | | +2 | +9 | +17 | +26 | +26 | +34 | +43 | | | | | | | | | | | | | | | | 50 | 65 | -140
-214 | -100 | | -60 | | | -60
-106 | -30
-60 | -10
-29 | 0
-13 | 0
-19 | 0
-30 | 0
-46 | ±9.5 | ±15 | +21
+2 | +30
+11 | +39
+20 | +51 | +62 | +60
+41 | +72
+53 | | | | | | | | | | | | | 65 | 80 | -150
-224 | -146 | -90 | -106 | -60 | -29 | -13 | -19 | -30 | -40 | | | +2 | +11 | +20 | +32 | +32 | +62
+43 | +78
+59 | | | | | | | | | | | | | | | | 80 | 100 | -170
-257 | -120
-174 | -72
-107 | -72
-126 | -36
-71 | -12
-34 | 0
-15 | 0
-22 | 0
-35 | 0
-54 | ±11 | ±17 | +25
+3 | +35
+13 | +45
+23 | +59
+37 | +72
+37 | +73
+51 | +93
+71 | | | | | | | | | | | | | | | | 100 | 120 | -180
-267 | -174 | -107 | -120 | -71 | -04 | -13 | -22 | -55 | -54 | | | +3 | +13 | +23 | +37 | +37 | +76
+54 | +101
+79 | | | | | | | | | | | | | | | | 120 | 140 | -200
-300 | 445 | 0.5 | 0.5 | 40 | 4. | • | • | | | . 40 5 | - 00 | . 00 | . 40 | . 50 | . 00 | . 00 | +88 +63 | +117 +92 | | | | | | | | | | | | | | | | 140 | 160 | -210
-310 | -145
-208 | -85
-125 | -85
-148 | -43
-83 | -14
-39 | 0
-18 | 0
-25 | -40 | -63 | ±12.5 | ±20 | +28 +3 | +40
+15 | +52
+27 | +68
+43 | +83
+43 | +90
+65 | +125
+100 | | | | | | | | | | | | | | | | 160 | 180 | -230
-330 | | | | | | | | | | | | | | | | | +93
+68 | +133 +108 | | | | | | | | | | | | | | | | 180 | 200 | -240
-355 | -170
-242 | | 400 | | | 400 | 400 | 400 | 100 | 100 | 100 | 100 | 400 | , | -100 | -100 | 100 | | 15 | • | • | | 0 | | | | | . 00 | . 70 | . 00 | +106 +77 | +151 +122 | | 200 | 225 | -260
-375 | | -100
-146 | -100
-172 | -50
-96 | -15
-44 | -20 | -29 | -46 | -72 | ±14.5 | ±23 | +33
+14 | +46
+17 | +60
+31 | +79
+50 | +96
+50 | +109 +80 | +159 +130 | | | | | | | | | | | | | | | | 225 | 250 | -280
-395 | | | | | | | | | | | | | | | | | | | +113 +84 | +169
+140 | | | | | | | | | | | | | | 250 | 280 | -300
-430 | -190
-271 | -110
-162 | -110
-191 | -56
-108 | -17
-49 | 0
-23 | 0
-32 | 0
-52 | 0
-81 | ±16 | ±26 | +36
+4 | +52
+20 | +66
+34 | +88
+56 | +108
+56 | +126
+94 | +190
+158 | | | | | | | | | | | | | | | | 280 | 315 | -330
-460 | -211 | 102 | 131 | 100 | -40 | -20 | -02 | -02 | -01 | | | , 4 | 120 | 104 | 130 | 130 | +130 +98 | +202 +170 | | | | | | | | | | | | | | | | 315 | 355 | -360
-500 | -210
-299 | -125
-182 | -125
-214 | -62
-119 | -18
-54 | 0
-25 | 0
-36 | 0
-57 | 0
-89 | ±18 | ±28 | +40
+4 | +57
+21 | +73
+37 | +98
+62 | +119
+62 | +114 +108 | +226
+190 | | | | | | | | | | | | | | | | 355 | 400 | -400
-540 | 200 | 102 | 217 | 113 | -04 | 20 | -00 | 0, | | | | , 4 | , 2 1 | .01 | . 02 | . 02 | +150 +114 | +244 +208 | | | | | | | | | | | | | | | | 400 | 450 | -440
-595 | -230
-327 | -135
-198 | -135
-232 | -68
-131 | -20
-60 | 0
-27 | 0
-40 | 0
-63 | 0
-97 | ±20 | ±31 | +45
+5 | +63
+23 | +80
+40 | +108
+68 | +131
+68 | +166 +126 | +272 +232 | | | | | | | | | | | | | | | | 450 | 500 | -480
-635 | -327 | -198 | 202 | 107 | -00 | LI | | -00 | - 31 | | | . 3 | .20 | . 40 | . 00 | . 00 | +172
+132 | +292
+252 | | | | | | | | | | | | | | | # HOUSING TOLERANCE TABLE(ISO) #### Unit:mm | | | Unit:mm | | | | | | | | | | | IL.IIIIII | | | | | | | | | | | | |---------------|-----|---------------|--------------|--------------|--------------|--------------|------------|------------|----------|----------|----------|------|------------|-----------|------------|------------|--------------|--------------|--------------|----|-----|------------|------------|------------| | \Rightarrow | < | B10 | C9 | D8 | E7 | E8 | F7 | G7 | H6 | H7 | H8 | JS7 | K7 | M7 | N7 | P7 | R7 | S7 | Т7 | | | | | | | _ | 3 | +180
+140 | +85
+60 | +34
+20 | +24
+14 | +28
+14 | +16
+6 | +12
+2 | +6
0 | +10
0 | +14
0 | ±5 | 0
-10 | -2
-12 | -4
-14 | -6
-16 | -10
-20 | -14
-24 | _ | | | | | | | 3 | 6 | +188
+140 | +100
+70 | +48
+30 | +32
+20 | +38
+20 | +22
+10 | +16
+4 | +8
0 | +12
0 | +18
0 | ±6 | +3
-9 | 0
-12 | -4
-16 | -8
-20 | -11
-23 | -15
-27 | _ | | | | | | | 6 | 10 | +208
+150 | +116
+80 | +62
+40 | +40
+25 | +47
+25 | +28
+13 | +20
+5 | +9
0 | +15
0 | +22 | ±7 | +5
-10 | 0
-15 | -4
-19 | -9
-24 | -13
-28 |
-17
-32 | _ | | | | | | | 10 | 14 | +200 | +138 | +77
+50 | +77 | +50 | +59 | +34 | +24 | +11 | +18 | +27 | ±9 | +6 | 0 | -5 | -11 | -16 | -21 | | | | | | | 14 | 18 | +150 | +95 | | +32 | +32 | +16 | +6 | 0 | 0 | 0 | ±9 | -12 | -18 | -23 | -29 | -34 | -39 | | | | | | | | 18 | 24 | +244 | +162 | +98 | +61 - | +73 | +41 | +28 | +13 | +21 | +33 | | +6 | 0 | -7 | -14 | -20 | -27 | _ | | | | | | | 24 | 30 | +160 | +110 | +65 | +40 | +40 | +20 | +7 | 0 | 0 | 0 | ±10 | -15 | -21 | -28 | -35 | -41 | -48 | -33
-54 | | | | | | | 30 | 40 | +270
+170 | +182
+120 | +119 | +75 | +89 | +50 | +34 | +16 | +25 | +39 | ±12 | +7 | 0 | -8 | -17 | -25 | -34 | -39
-64 | | | | | | | 40 | 50 | +280
+180 | +192
+130 | +80 | +50 | +50 | +25 | +9 | 0 | 0 | 0 | 12 | -18 | -25 | -33 | -42 | -50 | -59 | -45
-70 | | | | | | | 50 | 65 | +310
+190 | +214
+140 | +146 | | | +146 | +146 | +146 | | +106 | +60 | +40 | +19 | +30 | +46 | ±15 | +9 | 0 | -9 | -21 | -30
-60 | -42
-72 | -55
-85 | | 65 | 80 | +320
+200 | +224
+150 | +100 | +60 | +60 | +30 | +10 | 0 | 0 | 0 | ⊥ 13 | -21 | -30 | -39 | -51 | -32
-62 | -48
-78 | -64
-94 | | | | | | | 80 | 100 | +360
+220 | +257
+170 | +174 | +107
+72 | +125
+72 | +71 | +47 | +22 | +35 | +54
0 | ±17 | +10
-25 | 0
-35 | -10
-45 | -24
-59 | -38
-73 | -58
-93 | -78
-113 | | | | | | | 100 | 120 | +380
+240 | +267
+180 | +120 | | | +36 | +12 | 0 | 0 | | | | | | | -41
-76 | -66
-101 | -91
-126 | | | | | | | 120 | 140 | +420
+260 | +300
+200 | | | | | | +25 | | | | +12
-28 | 0 -40 | -12
-52 | -28
-68 | -48
-88 | -77
-117 | -107
-147 | | | | | | | 140 | 160 | +440
+280 | +310
+210 | +208
+145 | +125
+85 | +148
+85 | +83
+43 | +54
+14 | | +40
0 | +63
0 | ±20 | | | | | -50
-90 | -85
-125 | -119
-159 | | | | | | | 160 | 180 | +470
+310 | +330
+230 | | | | | | | | | | | | | | -53
-93 | -93
-133 | -131
-171 | | | | | | | 180 | 200 | +525
+340 | +355
+240 | | | | | | | | | | | | | | -60
-106 | -105
-151 | -149
-195 | | | | | | | 200 | 225 | +565
+380 | +375
+260 | +242
+170 | +146
+100 | +172
+100 | +96
+50 | +61
+15 | +29
0 | +46
0 | +72
0 | ±23 | +13
-33 | 0
-46 | -14
-60 | -33
-79 | -63
-109 | -113
-159 | -163
-209 | | | | | | | 225 | 250 | +605
+420 | +395
+280 | | | | | | | | | | | | | | -67
-113 | -123
-169 | -179
-225 | | | | | | | 250 | 280 | +690
+480 | +430
+300 | | +162 | +191 | +108 | +69 | +32 | +52 | +81 | ±26 | +16 | 0 | -14 | -36 | -74
-126 | -138
-190 | -198
-250 | | | | | | | 280 | 315 | +750
+540 | +460
+330 | +190 | +110 | +110 | +56 | +17 | 0 | 0 | 0 | 120 | -36 | -52 | -66 | -88 | -78
-130 | -150
-202 | -220
-272 | | | | | | | 315 | 355 | +830
+600 | +500
+360 | +299 | +182 | +214
+125 | +119 | +75 | +36 | +57 | +89 | ±28 | +17 | 0 | -16 | -41 | -87
-144 | -169
-226 | -247
-304 | | | | | | | 355 | 400 | +910
+680 | +540
+400 | +210 +1 | +125 | | +62 | +18 | 0 | 0 | 0 | | -40 | -57 | -73 | -98 | -93
-150 | -187
-244 | -273
-330 | | | | | | | 400 | 450 | +1010
+760 | +595
+440 | +327 | +198 | +232 | +131 | +83 | +40 | +63 | +97 | ±31 | +18 | 0 | -17 | -45 | -103
-166 | -209
-272 | -307
-370 | | | | | | | 450 | 500 | +1090
+840 | +635
+480 | +230 | +135 | +135 | +68 | +20 | 0 | 0 | 0 | 131 | -45 | -63 | -80 | -108 | -109
-172 | -229
-292 | -337
-400 | | | | | | Chamfering Tolerance testing # **BEARINGS PRODUCE** CNC machines workroom CNC machines (Japan) Honing machines (USA) Lathe machines workroom **CNC Machines** CSB EP compound bearings workroom Grinding Machines Lathe Machines Friction welding # **R&D CENTER** **CSB** Testing center Instron 5567 material testing (USA) Thermomechanical analysis(German) Accelerated weathering tester(USA) Electronic scanning microscope(Japan) Dynatup pendulum impact machine(USA) Linear motion testing machine Oscillation motion testing machine High load PV testing MMD testing machine Low load high speed PV testing Micrograph Spectrograph machine # **AUTOMOTIVE INDUSTRIES** We supply CSB 3-layer dry/marginal bearings and EP series self-lubricating bearings for automotive industries. Bushes for accelerator, brake, clutch pedal Bushes for reflector control Bushes for windscreen wipers Bushes for windscreen lift system Bushes for roof window system Bushes for gear lever Bushes for door hinges Bushes for door lock Bushes for seat belt system Bushes for engineer Bushes for starter motor Bushes for chair control Bushes for shock absorbers Bushes for carburetor CSB 650#/250#/850# oilless bearings apply in automotive produce tools. CSB850# Bimetal self-lubricating strip applied in segment tire mold. # **OA MACHINES & FITNESS EQUIPMENTS** We supply CSB 3-layer dry/marginal bearings and EP series self-lubricating bearings for OA machines, ATM machines, food industries, chemical machines, sports machines and fitness equipments and so on. The advantage compare with the metal bushes is lower weight and lower cost... # **CONSTRUCTION & AGRICULTURAL MACHINES** The CSB650#/250#/200# can apply for high load with lower speed application like bulldozer, grab, scraper, crane and so on construction machines. # **PLASTIC MACHINES** # **CIVIL PROJECTION** CSB850#/650# Self-lubricating materials applied in water turbine parts. The good wear resistance and maintenance-free solution bearings can be used in civil industries. Hydraulic power station Dam-gate Sluice-gate Bridge oilless bearings... CSB650#/CSB850 is good material for this kind industries.