Gleitlagertechnik

Composite Self-lubricating Bearings

CSB-10: Steel bronze powder with PTFE/Pb dry bearings	P3, P35-42
CSB-50: Steel bronze powder with PTFE dry bearings Without lead	P4, P43-46
CSB-LA10: Aluminum alloy bronze powder with PTFE/fibre dry bearings Without lead	P5, P47-50
CSB-10DH: Steel bronze powder with PTFE/fibre dry bearings Without lead	P6
CSB-10HP: Steel bronze powder with PTFE/fibre dry bearings	P7
CSB-11: Bronze backed with bronze powder PTFE/Pb dry bearings	P8, P51-54
CSB-30: Stainless steel bronze powder with PTFE/fibre dry bearings Without lead	P9, P55-57
CSB-40: Steel bronze powder with PTFE//fibre dry bearings Without lead	P10, P58-61
CSB-20: Steel bronze powder with POM marginal bearings	P11, P62-66
CSB-22: Steel bronze powder with PVDF marginal bearings	P12, P67-69
CSB-80: Steel bronze powder with PEEK/PTFE marginal bearings	P13, P70-72
CSB-12/32: 2 layer dry bearings	P14
CSB-FR/3S: Metal mesh with PTFE layer	P15
CSB-FD: Bronze powder with PTFE tape	P15
CSB-TEX: Steel with PTFE fibre fabric	P16

Metallic Self-lubricating Bearings

CSB650: Cast bronze with graphite oilless bearings	P17-18, P73-P78
CSB600: Solid bronze turned bearings	P19
CSB250: Cast iron with graphite oilless bearings	P20, P79-82

CSB200: Hard steel with special treatment slide bearings	P21
CSB-090(FB090): Bronze wrapped bearings	P22, P83-86
CSB-09G(FB09G): Bronze with graphite wrapped bearings	P23
CSB-T90(FT090): Bronze wrapped bearings with through holes	P24, P87-90
CSB850S: Metal backed with bronze alloy graphite oilless bearings	P25, P91-96
CSB850BM: Metal backed with bronze graphite oilless bearings	P26-27, 97-100
CSB-800(JF-800): Steel with bronze powder bimetal bearings	P28, P101-104
CSB450: Steel with bronze high precision bearings	P29, P105-106
CSB-SNF: Powder sintered bearings	P30

The others

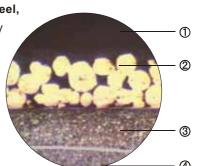
JOCU: Oilless unit parts	 P31, P107-109
The other new materials	 P31

Plastic Compound Bearings

CSB-EP: Plastic compound bearings ------ P32-34, P111-114

CSB-10 Steel bronze powder with PTFE/Pb dry bearings

Dimensions of Standard Products See P35~42



Features

Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. High chemical resistance, low absorption of water and swelling. Also performs well with lubrication.

Structure

- 1. PTFE/Pb mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE-lead mixture.
- 3. Low-carbon steel, gives exceptionally high load carrying capacity, excellent heat dissipation.
- 4. Copper/Tin plating 0.002mm, provides good corrosion resistance.

Tech. Data								
	Static	250N/mm ²		Friction co	pefficient	0.03~0.20		
Max. Load	Very low speed			Dry running	2m/s			
Max. Load	Rotating oscillating	60N/mm²		Max. speed	Hydrodynamic operation	>2m/s		
Max. PV dry	Short-term operation	3.6N/mm²*m/s		Thermal conductivity		42 W(m*K) ⁻¹		
running	Continuous operation	1.8N/mm²*m/s		Coefficient of thermal expansion		11*10 ⁻⁶ *K ⁻¹		
Temp. limit		-195℃~+280℃						

Typical Application

Can meet the demanding criteria for long life and troublefree performance with or without lubrication.

Automotive: tractors, combines, crop sprayers, earthmovers, graders and other construction, auto machines, specific uses in power steering cylinders, steering gear thrust washers, disc brakes, calipers and pistons, shock absorbers, governor linkage, windshield wiper motor, tilt gear assemblies...

Business machines: photocopy machines, typewriters, mail sorters, postage meter systems, computer terminal

printers and peripheral equipment, automatic printing devices, mail processing machinery...

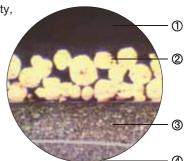
Hydraulics and valves: pumps including gear, rotary, water, axial piston, and other types, ball, butterfly, poppet steam, and other valves and valve trunnions...

Home appliances: tape recorders, refrigerators, air conditioners, cleaners, polishers, sewing machines, ovens, dishwashers, clothes washing machines...

And materials handling, marine engine, packaging, textile equipment, tools...

CSB-50 Steel bronze powder with PTFE dry bearings

Dimensions of Standard Products See P43~46



Features

The features same as CSB-10 but without lead, Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. High chemical resistance, lower absorption of water and swelling. Also performs well with lubrication.

Structure

- **1.PTFE fibres mixture 0.01~0.03mm,lead-free** provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture.
- 3.Steel backing, provides high load carrying capacity, excellent heat dissipation.
- 4. Copper/Tin plating 0.002mm, provides good corrosion resistance.

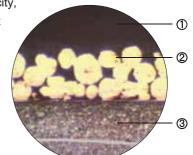
Tech. Data								
	Static	250N/mm ²		Friction coefficient		(0.03~0.20	
Max. Load	Very low speed	140N/mm ²			Dry running	2	2m/s	
Max. Load	Rotating oscillating	60N/mm²		Max. speed	Hydrodynamic operation		>2m/s	
Max. PV	Short-term operation	3.6N/mm²*m/s		Thermal conductivity		4	42 W(m*K) ⁻¹	
dry running	Continuous operation	1.8N/mm²*m/s		Coefficient of thermal expansion		1	11*10 ⁻⁶ *K ⁻¹	
Temp. limit		-195℃~+280℃						

Typical Application

The CSB-50 have same application as the normal CSB-10 type bearings, but much more for automotive industry, food industry, medicine machines, drink machines and so on which not allowed use the lead and difficulty forming the oil film or need dry lubrication parts.

CSB-LA10 Aluminum alloy bronze powder with PTFE/fibre

Dimensions of Standard Products See P47~50



Features

This material structure enables the final goods have more light and easy installation. Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary, directing and oscillating movement.

Structure

- **1. PTFE/fibre mixture 0.01~0.03mm,** provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE layer mixture.
- 3. Aluminum alloy, gives good load carrying capacity, excellent heat dissipation.

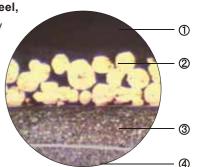
Tech. Data									
	Static	100N/mm ²		Friction co	pefficient	0.03~0.20			
Max. Load	Very low speed 50N/mm²		Dry running	2m/s					
Max. Load	Rotating oscillating	20N/mm ²		Max. speed	Hydrodynamic operation	>2m/s			
Max. PV dry	Short-term operation	2.8N/mm ² *m/s		Thermal conductivity		150W(m*K) ⁻¹			
running	Continuous operation	1.8N/mm²*m/s		Coefficien expansion	t of thermal	24*10 ⁻⁶ *K ⁻¹			
Temp. limit		-195℃~+200℃							

Typical Application

CSB-LA10 have much lower weight can be applied in OA machineries, fitness equipments, bicycle, food industry machines, packaging machineries etc.

CSB-10DH Steel bronze powder with PTFE/fibre dry bearings

Dimensions of Standard Products See CSB-10



Features

Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement.

Structure

- 1. PTFE/fibre mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture.
- 3. Low-carbon steel, gives exceptionally high load carrying capacity, excellent heat dissipation.
- 4. Copper/Tin plating 0.002mm, provides good corrosion resistance.

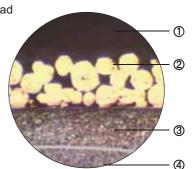
Tech. Data								
	Static	250N/mm ²		Friction co	oefficient	0.0	05~0.20	
Max. Load	Very low speed 140N/mm²		Dry running	2n	n/s			
Max. Load	Rotating oscillating	60N/mm²		Max. speed	Hydrodynamic operation	>2	?m/s	
Max. PV	Short-term operation	3.6N/mm ² *m/s		Thermal conductivity		42	? W(m*K) ⁻¹	
dry running	Continuous operation	1.8N/mm²*m/s		Coefficient of thermal expansion		11	*10 ⁻⁶ *K ⁻¹	
Temp. limit		-195℃~+280℃						

Typical Application

The material have same application like normal CSB-10 material, but typical application for automotive industry like door hinges, trunk hinges, bonnet hinges, dampers, seats etc.

CSB-10HP Steel bronze powder with PTFE/fibre dry bearings

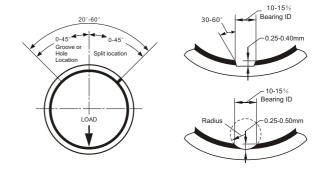
Dimensions of Standard Products See CSB-10



Features

The new material CSB-10HP have been developed for high load with high speed under lubrication. The special resin can support high PV value with lower friction and good wear resistance. The speed can be up to 5m/s, PV up to 60N/mm²*m/s.

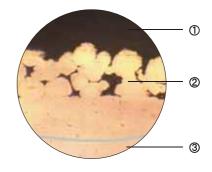
Structure


- **1. PTFE/fibre** mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2. Sintered bronze powder 0.20-0.35mm,** provides Max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE layer mixture.
- 3. Low-carbon steel, gives exceptionally high load carrying capacity, excellent heat dissipation.
- 4. Copper/Tin plating 0.002mm, provides good corrosion resistance.

Tech. Data								
	Static	250N/mm ²		Temp. lim	nit	-195℃~+280℃		
Max. Load	Very low speed	140N/mm ²		Friction c	oefficient	0.03~0.20		
	Rotating	60N/mm²		N4 -	Dry running	2m/s		
	oscillating			Max. speed	Hydrodynamic	>5m/s		
	Short-term	3.6N/mm ² *m/s			operation	Z011//S		
Max. PV dry	operation			Thermal conductivity		42W(m*K) ⁻¹		
running	Continuous	1.8N/mm²*m/s		morman		72 (111 10)		
	operation	1.0IV/IIIII III/S			nt of thermal	11*10 ⁻⁶ *K ⁻¹		
PV hydrodynamic		60N/mm ² *m/s		expansion		11°10 °K		

Typical Application

This new material can work for high PV value application with oil lubrication, and also well performance under dry lubrication. The typical application like gear pump, vane pump, shock absorber, gear motor, axial and radial piston pumps etc. The inner side of bushes can design oil groove or holes for performance oil lubricating (detail please refer CSB oil groove notice).


CS B-1 1 Bronze backed with bronze powder PTFE/Pb dry bearings

Dimensions of Standard Products See P51~54

Structure

- 1.PTFE/Pb mixture 0.01~0.03mm, provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- 2.Sintered bronze powder 0.20-0.35mm, provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE-lead mixture.
- 3.Bronze backing, gives exceptionally high load carrying capacity, excellent heat dissipation. Have very good corrosion resistance.

Features

Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. Very high chemical resistance, low absorption of water and swelling. Also performs well with lubrication. Bronze backing provides improved corrosion resistance compared with CSB-10.

Tech. Data								
	Static	250N/mm ²		Friction c	coefficient	0.03~0.20		
Max. Load	Very low speed	Very low speed 140N/mm²	Max.	Dry running	2m/s			
IVIAX. LUAU	Rotating oscillating	60N/mm²		speed	Hydrodynamic operation	>2m/s		
Max. PV	Short-term operation	3.6N/mm ² *m/s		Thermal	conductivity	70W(m*K) ⁻¹		
running	Continuous operation	1.8N/mm²*m/s		Coefficient of thermal expansion		17*10 ⁻⁶ *K ⁻¹		
Temp. limit		-195℃~+280℃						

Typical Application

Can meet the demanding criteria for long life and troublefree performance with or without lubricant, of high safety factor even...

Same as the CSB-10 BUSHING, But especially for high chemical resistance request.

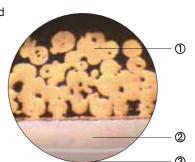
Steel metallurgy industry such as bushes for roller grooves of successive casting machines, cement grouting pumps and

screw conveyers for cement, it can also be composed in steel housing or fabricated into flanged bushes which can move both in radial and in axial directions.

The bearings are particularly appropriate for high temperature environment where no oil is efficient and the machine must be under successive long period working condition.

CSB-30 Stainless steel bronze powder with PTFE dry bearings

Dimensions of Standard Products See P55~57



Features

Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. Very high chemical resistance, low absorption of water and swelling. Also performs well with lubrication. Stainless steel backing provides improved corrosion resistance compared with CSB-10/11.

Structure

- **1.PTFE** polymer fibres mixture 0.01~0.03mm, lead-free provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture.
- 3.Stainless steel backing, provides high load carrying capacity, very high level of resistance in corrosive environments.

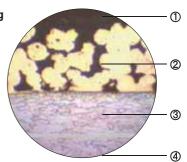
Tech. Data								
	Static	250N/mm ²		Temp. limit			-195°C~+280°C	
Max. Load	very low speed 140N/mm²		N/a		/ running	2m/s		
	Rotating oscillating	60N/mm²		Max. speed Hydrodynamic operation			>2m/s	
Max. PV drv	Short-term operation	3.6N/mm ² *m/s		Thermal conductivity		42 W(m*K) ⁻¹		
running	Continuous operation	1.8N/mm ² *m/s		Coefficient of thermal expansion			15*10 ⁻⁶ *K ⁻¹	
P\/ may hvo	drodynamic	20N/mm²*m/o		Friction		Dry	0.08~0.20	
PV max. hydrodynamic 30N/mm²*m/s		coefficient		Hydrodynamic	0.02~0.08			

Typical Application

The high level of resistance in corrosion environment provides good application for chemical industry like chemical valve, chemical pump, flow meter, food industry, medicine industry, seawater/water lubrication parts etc.

CSB-40 Steel bronze powder with PTFE/fibre dry bearings

Dimensions of Standard Products See P58~61



Features

Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary and oscillating movement. High chemical resistance, low absorption of water and swelling. The CSB-40 improved the friction and much good wear resistance over the common CSB-10 under lubricated operation.

Structure

- **1.PTFE** polymer fibres mixture 0.01~0.03mm,lead-free provides an excellent initial transfer film, which effectively coats the mating surface of the bearing assembly, forming an oxide type solid lubricant film.
- **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE mixture.
- **3.Steel backing,** provides high load carrying capacity, excellent heat dissipation.
- **4.Copper/Tin plating 0.002mm,** provides good corrosion resistance.

Tech. Data								
	Static	250N/mm ²		Temp. limi	it		-195°C~+280°C	
Max. Load	Very low speed	140N/mm ²		Max. speed		y running	2m/s	
	Rotating oscillating	60N/mm²				Hydrodynamic		>2m/s
Max. PV dry	Short-term operation	3.6N/mm²*m/s		Thermal conductivity			42 W(m*K) ⁻¹	
running	Continuous operation	1.8N/mm²*m/s		Coefficient of thermal expansion			11*10 ⁻⁶ *K ⁻¹	
DV may hyd	DV may hydradynamia			Friction		Dry	0.08~0.20	
PV max. hydrodynamic		30N/mm ² *m/s	coefficient		Hydrodynamic	0.02~0.08		

Typical Application

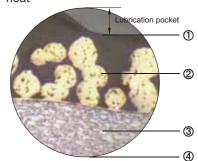
Developed for high duty, oil lubricated, hydraulic applications...

Automotive suspension struts, shock absorbers guide bushing, hydraulic cylinders, gear pumps and motors and

axial and radial piston pumps and motors. CSB-40 is designed for use mainly under lubricated lubrications and shows excellent wear resistance, low static and dynamic friction coefficient.

CSB-20 Steel bronze powder with POM marginal bearings

Dimensions of Standard Products See P62~66



Features

Suitable for rotary and oscillating movement, lower maintenance requirements due to the long re-lubrication intervals, lower wear, lower susceptibility to edge loading, no absorption of water and therefore no swelling, good damping behaviours, good resistance to shock loads.

Structure

- **1.POM 0.30~0.50mm,** has high wear resistance and low friction even only minute quantities of lubricant are supplied, this bearing surface carries a pattern of circular indents which should be filled with grease on assembly of the bearing.
- **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the resin mixture.
- **3.Low-carbon steel,** gives exceptionally high load carrying capacity, excellent heat dissipation.
- **4.Copper plating 0.002mm,** good
 c o r r o s i o n
 resistance.

Tech. Data									
Static		250N/mm ²		Temp. lim	it	-40°C~+110°C			
Max. Load	Very low speed 140N/mm²	Pre-lubricated	2m/s						
Rotating	70N/mm²	'0N/mm²	Max. speed	Oiling continuous Grease	>2m/s				
Max. PV	Max. PV 3N/n			Thermal conductivity		4 W(m*K) ⁻¹			
Coefficient of thermal expansion		11*10 ⁻⁶ *K ⁻¹		Friction coefficient		0.05~0.20			
Initial pre-lubrication at assembly required									

Typical Application

Recommended for applications involving intermittent operation or boundary lubrication...

Automotive: suspension joints, kingpin assemblies and stub axles of tucks, automobile driving joint hinges, steering and other linkages, articulation joints, rear chassis hinges, fair leader rollers...

Machine tool building industry: spindles in drill, grinding,

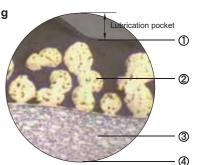
and milling machines, ram guide plates in multiram presses...

Agricultural equipment: gearbox, clutch, bale trips and wheel caster swivels for bale accumulators, front axle pivot bearings, steering idler box bearings and kingpin bearings for harvesters...

Be especially well-suited for applications where lubricant can not be supplied continuously or repeatedly.

CSB-22 Steel bronze powder with PVDF marginal bearings

Dimensions of Standard Products See P67~69


Features

The special resin supply with excellent wear resistance and very lower friction, can be keep good work condition even no oil giving. This material can be produce as CSB-20 with the oil pocket for oil/grease containing. To get much high tolerance of the ID, the resin surface can be machine again after the bushes fitting. The applications including metallurgy machines, ming machines, irrigation work, automotive industries, agriculture machines.

Structure

- **1.PVDF/PTFE 0.30~0.50mm,** has high wear resistance and low friction even only minute quantities of lubricant are supplied, this bearing surface carries a pattern of circular indents which should be filled with grease on assembly of the bearing.
- **2.Sintered bronze powder 0.20-0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the resin mixture.
- **3.Low-carbon steel,** gives exceptionally high load carrying capacity, excellent heat dissipation.

4.Copper plating
0.002mm, good
corrosion
resistance.

Tech. Data									
	Static	250N/mm ²		Temp. limi	t	-50°C~+160°C			
Max. Load	Very low speed	140N/mm ²		Max. speed	Pre-lubricated	2m/s			
Rotating	Rotating oscillating	70N/mm²			Oiling Grease continuous	>3m/s			
Max. PV	Max. PV			Thermal conductivity		4 W(m*K) ⁻¹			
Coefficient of thermal expansion		11*10 ⁻⁶ *K ⁻¹		Friction coefficient		0.03~0.20			
Initial pre-lubrication at assembly required									

Typical Application

Recommended for applications involving intermittent operation or boundary lubrication...

Automotive: suspension joints, kingpin assemblies and stub axles of tucks, automobile driving joint hinges, steering and other linkages, articulation joints, rear chassis hinges, fair leader rollers...

Machine tool building industry: spindles in drill, grinding,

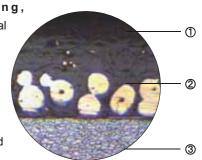
and milling machines, ram guide plates in multiram presses...

Agricultural equipment: gearbox, clutch, bale trips and wheel caster swivels for bale accumulators, front axle pivot bearings, steering idler box bearings and kingpin bearings for harvesters...

Be especially well-suited for applications where lubricant can not be supplied continuously or repeatedly.

CSB-80 Steel bronze powder with PEEK/PTFE marginal bearings

Dimensions of Standard Products See P70~72



Features

- 1. CSB-80 provides maintenance-free operation
- 2. Operate satisfactorily without lubrication under light duty and low speed
- 3. CSB-80 has a high PV capability under high temperature
- 4. Temperature be allowance from -150 °C ~+250 °C
- 5. Good chemical resistance
- 6. High static and dynamic load capacity
- 7. No water absorption
- 8. Suitable for rotating, oscillating, reciprocating and sliding movement.

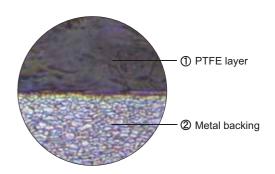
Structure

- **1.PEEK+PTFE 0.30~0.50mm,** gives high wear resistance and low friction even only minute quantities of lubricant are supplied. This bearing surface carries a pattern of circular indents which should be filled with grease on assembly of the bearing.
- **2.Bronze layer 0.20~0.35mm,** provides max. thermal conductivity away from the bearing surface, also serves as a reservoir for the PTFE/PEEK mixture.
- 3. Steel backing, provides mechanical strength and high load carrying capacity.
- 4. Copper/Tin plating 0.002mm, provides good corrosion resistance.

Tech. Data									
	Static	250N/mm ²		Friction	coefficient	0.03~0.20			
Max. Load	Very low speed	140N/mm ²		Max	Pre-lubricated	2m/s			
iviax. Load	Rotating oscillating	60N/mm²			Oiling Grease continuous	>2m/s			
May BV	Short-term operation	3.6N/mm ² *m/s		Thermal conductivity		50 W(m*K) ⁻¹			
Max. PV	Continuous operation	1.8N/mm²*m/s		Coefficient of thermal expansion		11*10 ⁻⁶ *K ⁻¹			
Temp. limit		-150℃~+250℃							

CSB-80 is a composite bearing material, developed specifically to operate with marginal lubrication and consists of three bonded layers. It is designed for marginally lubricated operation, and is capable of

CSB-12/32 2 layer dry bearings


Structure

CSB-12 consists of a steel shell, laminated with compounded PTFE tape. This material structure enables the final goods have more light. It is widely used like automotive door hinges, trunk hinges, engines cover hinges , bicycle pedal and office machines etc which need dry lubrications.

CSB-32 is same as CSB-12, but with stainless steel backing which provides good corrosion resistance. It is widely been used in chemical industries, medical industries, food industries etc.

Features

This material structure enables the final goods have more light and easy installation. Suitable for dry running, low coefficient of friction, lower wear, good sliding characteristics, forming a transfer film can protect the mating metal surface, suitable for rotary, directing and oscillating movement. It is widely been used in chemical industries, medical industries, food industries, textile machines, OA machines, door/window hinges etc.

Tech. Data									
	Backing I	Material		Max. Load	Static	120N/mm ²			
Standard Thick, mm	CSB-12	CSB-32		IVIAX. LUAU	Dynamic	80N/mm ²			
THICK. HIHI	Carbon steel	Stainless steel	steel	Dry	1m/s				
0.50	*			Max. Seepd	Oil	>1m/s			
0.75	*	*		Temp.		-195℃~+180℃			
1.00	*	*		Friction coefficient		0.03~0.20			
1.50	*								

CSB-FR/3S Metal mesh with PTFE layer

Structure

CSB-FR consist of a metal mesh shell, laminated with compounded PTFE tape. This material structure enables the final goods have more light and easy for install. It is widely been used in chemical industries, medical industries, food industries, textile machines, OA machines, door/window hinges etc. we can supply Bronze mesh (CSB-FRB), stainless steel mesh (CSB-FRS) as the backing material.

Structure

CSB-3S consists of a stainless steel mesh shell laminated with compounded PTFE tape. This material structure enables the final goods have more light. The stainless steel provides good corrosion resistance. It is widely been used in chemical industries like chemical valves, medical industries, food industries etc.

CSB-FD Bronze powder with PTFE tape

Structure

CSB-FD consist of PTFE with bronze powder and additive material, this material structure enable the final goods have more light and easy for install. It is widely been used in chemical industries, medical industries, fluid hydraulic industries, textile machines, OA machines, door/window hinges etc.

CSB-TEX Steel with PTFE fibre fabric

Dimensions as CSB-20 standard size

Structure

This new material use the PTFE fibres fabric overlay on metal backings, the fabric have very high load capacity and much longer operating life compare with conventional 3-layer bushes. The metal can be carbon steel (CSB-TEX), stainless steel (CSB-TEX3), bronze (CSB-TEXB) etc.

Features

Suitable for rotary and oscillating movement, lower maintenance requirements due to the long re-lubrication intervals, lower wear, lower susceptibility to edge loading, no absorption of water and therefore no swelling, good damping behaviours, good resistance to shock loads. much long service life under lower speed with high load.

Tech. Data								
May Load	Static	350N/mm ²	Temp.	-50℃~+250℃				
Max. Load	Dynamic	180N/mm ²	Friction coefficient	0.03~0.20				
Max. Speed	Dry	0.5m/s	Thermal conductivity	42W(m*k) ⁻¹				
Max. Speed	Grease	>1m/s	Thermal conductivity	42VV(III K)				
Max. PV	Short-term	3.6N/mm ² *m/s	Coefficient	11*10 ⁻⁶ k ⁻¹				
(Dry)	Continuous	1.8N/mm ² *m/s	of thermal expansion	11"10 K				

Typical Application

Now have been used like suspension and auxiliary of agriculture and construction machines, cranes and hydraulic and mechanical jibs, ball butterfly and sluice valves, water pumps, chemical industries etc.

CSB650 Cast bronze with graphite oilless bearings

Structure

650# material is made of strong cast bronze based metal with special solid lubricants embedded. The base metal withstands high load and the solid lubricants provide for self-lubrication. The bearing shows excellent performance without pre-lubrication under conditions of extreme high/lower temperature with low speed.

This material provides a maintenance-free bearing solution, particularly for high load, intermittent of oscillating motion.

Features

- 1. May work without any oil for long period
- 2. Extremely high load capacity, good anti-wear and lower friction
- 3. Particularly appropriate for low speed and high load
- 4. Suitable for reciprocating, oscillation or intermittent motion where oil film is hard to be formed
- 5. Good chemical resistant and anti-corrosion characteristics
- 6. Can be used in wide range of temperature from -40 $^{\circ}\mathrm{C}$ ~+300 $^{\circ}\mathrm{C}$

Typical Application

This kind of bearing can be applied under dry, high temperature, high pressure, corrosive, water or other chemical environments when no oil can be introduced. Now is widely be used in automotive products line, water engineering, dam gate, plastic industries, successive casting machines, steel rollers in metallurgy industry, mineral machines, ships, turbo generators, hydraulic turbines and injection molding machines...

CSB650 Cast bronze with graphite oilless bearings

Main metal type					
CSB Standard	650# Strong cast bronze	650S1 Copper alloy	650S2 Copper alloy	650S3 Copper alloy	650S5 Special strong cast bronze
Cu%	65	85	80	88	65
Sn%		5		12	
Pb%		5			
Zn%	25	5			25
Ni%			5		
AI%	6		10		6
Fe%			5		
Mn%	4				4
Density	8.0	8.8	7.6	8.8	8.0
Hardness HB	>210	>70	>150	>80	>250
Tensile strength N/mm ²	>750	>200	>500	>270	>800
Elongation%	>12	>15	>10	>8	>4
Coefficient of linear expansion	1.9*10⁻⁵/℃	1.8*10⁻⁵/℃	1.6*10⁻⁵/℃	1.8*10⁻⁵/℃	1.9*10⁻⁵/℃
Friction coefficient	0.03~0.20	0.03~0.18	0.03~0.20	0.03~0.18	0.03~0.20
Thermal conductivity	60 W(m*K) ⁻¹	60 W(m*K) ⁻¹	60 W(m*K) ⁻¹	60 W(m*K) ⁻¹	60 W(m*K) ⁻¹
Limit Temp.	300℃	400℃	400℃	400℃	300℃
Max. load N/mm ²	100	60	50	70	150
Max. speed m/min	15	10	20	10	10
Max. PV N/mm ² *m/min	200	200	200	200	200

For special heavy load application, CSB also can supply the strong cast bronze of special high hardness 650HP. The material can be up to HB270~300.

Solid Lubricants							
Lubricant	Features	Typical application					
SL1 Graphite+add	Excellent resistance against chemical attacks and low friction. Temp limit 400°C	Suite for general machines and under atmosphere					
SL4 PTFE+MOS ₂	Lower in friction and good for water lubrication, Temp. limit 300 ℃	Suite for water/sea lubrication, like ship, hydraulic turbine, gas turbine etc.					

CSB600 Solid bronze turned bearings

Structure

Machined Cast bronze bearings offer technically and economically favourable bearings solutions. High loading capability, low weight, good corrosion resistance. CSB can offered different type bronze alloys according to the life time, service etc. The tolerance is much tighter than wrapped bronze bushes.

Oil groove

Tech. Data								
Material		600	600S1	600S2	600S3	600S4	600S5	600S6
	Cu	65	85	80	88	80	65	76
	Sn		5		12	10		8
	Pb		5			10		15
Composition 0/	Zn	25	5				25	
Composition %	Ni			5				1
	Al	6		10			6	
	Fe			5				
	Mn	4					4	
Density		8.0	8.8	7.6	8.8	8.9	8.0	9.1
Yield point N/mm ²	2	>350	>90	>260	>150	>100	>450	>80
Tensile strength N/mm²		>750	>200	>500	>270	>210	>800	>180
Elongation %		>12	>15	>10	>5	>8	>4	>8
Hardness HB		>210	>70	>150	>80	>75	>250	>60

CSB250 Cast iron with graphite oilless bearings

Dimensions of Standard Products See P79~82

Structure

250# material is made of cast iron based metal with special lubricants embedded. The base metal withstands high load and the solid lubricants provide for self-lubrication. The bearing shows excellent performance without pre-lubrication under conditions of extreme high/lower temperature with lower speed.

Features

This material provides a maintenance-free bearing solution, particularly for high load, intermittent of oscillating motion. Solid lubricants within cast iron combines the high load with the wear resistance and low friction. The application including automotive products line, mold & die, plastic industries etc.

Tech. Data								
Max. Load	Static	70N/mm ²	Tensile strength	150N/mm ²				
Max. Loau	Dynamic 1	10N/mm ²	Temp.	-40℃~+400℃				
May Speed	Dry	0.15m/s	Friction coefficient	0.08~0.20				
Max. Speed	Hydrodynamic	0.25m/s	Hardness	HB > 160				
Max. PV		0.8N/mm ² *m/s						

Typical Application

This type products can be widely used under high temperature and high load with low speed conditions. like kind of mould, machinery assembly line, automotive assembly line, automotive mold, steel miller, plastic industries and so on.

CSB200 Hard steel with special treatment slide bearings

Structure

Carbon steel machined slide bearings, the oil groove can be produced according to the bearing work condition if needed. The bushes have been treated by special techniques have high load capacity with lower friction and excellent wear resistance.

Features

High load capacity over 150N/mm², Suitable for rotary and oscillating movement, lower maintenance requirements due to long re-lubrication intervals, excellent wear resistance under high load with lower speed. Good resistance to shock loads, good characteristics when operating in the presence of abrasive media or dirty environment.Initial pre-lubrication at assembly required.We can supply the parts as your detail drawings.

Tech. Data								
Max. Load	Static	250N/mm ²	Hardness	HRC>50				
Dynami	Dynamic	150N/mm²	Elongation	15%				
Max. Speed		0.6m/s	Temp.	-100℃~+200℃				
Max. PV		1.2N/mm ² *m/s	Friction coefficient	0.05~0.25				
Tensile streng	Tensile strength 400N/mm²		Thermal conductivity	60W(m*k) ⁻¹				
Yield point		300N/mm ²	Coef. of thermal expansion	15*10 ⁻⁶ k ⁻¹				

Typical Application

This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines, agriculture machines, refuse truck, plastic machines, steel industries etc.

CSB-090(FB090) Bronze wrapped bearings

Dimensions of Standard Products See P83~86

Structure

The bearings are wrapped of a cold formable homogenous bronze (CuSn8), which will obtain exceptional material properties. The standard size are fitted with diamond shaped lubrication indents on the bearing surface. These indents serve as lubricant reservoirs to rapidly build up a lubrication film in the start movement and therewith reduce the start friction. The material suitable for constructions, agriculture etc where high load and slow movement are occurring.

Chemical compositions								
Material type	Cu%	Sn%	P%	Pb%	Zn%			
CSB-090	91.3	8.5	0.2	1	1			

Tech. Data								
Max. Load	Static	120N/mm ²	Hardness	HB 110-150				
IVIAX. LOAG	Dynamic	40N/mm²	Elongation	40%				
Max. Speed		2m/s	Temp.	-100℃~+200℃				
Max. PV		2.8N/mm ² *m/s	Friction coefficient	0.08~0.25				
Tensile streng	Tensile strength 450N/mm²		Thermal conductivity	60W(m*k) ⁻¹				
Yield point		250N/mm ²	Coef. of thermal expansion	15*10 ⁻⁶ k ⁻¹				

Feature

- 1. Easy of fitting and lubrication
- 2. High load capacity
- 3. Possibility of producing items, inner side can be machined
- 4. High level thermal conductivity
- 5. Minimum overall dimensions
- 6. Chemical resistance

Initial pre-lubrication at assembly required...

Typical Application

This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines. It can be fabricated into bushes, half bearings, flanged bushes, trust washers, spherical bearing so on.

CSB-09G(FB09G) Bronze with graphite wrapped bearings

Dimensions of Standard Products as CSB-090

Structure

The same produce process and application as CSB-090 type material except overlay the solid lubricants into the diamond shaped lubrication indents on the bearing surface, which will offer good friction at the start and process works and keep good condition even no oil giving at short time. So can be used in construction machines, gears, automotive clutch parts etc.

Chemical of	composition	s			
Material type	Cu%	Sn%	P%	Pb%	Zn%
CSB-09G	91.3	8.5	0.2	1	1

Tech. Data									
Manual Static		120N/mm ²	Hardness	HB>110					
Max. Load	Dynamic	40N/mm²	Elongation	40%					
Max. Speed		2.5m/s	Temp100℃~+						
Max. PV		2.8N/mm ² *m/s	Friction coefficient	0.05~0.25					
Tensile strength 450N/mm²		450N/mm ²	Thermal conductivity	60W(m*k) ⁻¹					
Yield point		250N/mm ²	Coef. of thermal expansion 15*10-6						

Feature

- 1. Easy of fitting and lubrication
- 2. High load capacity
- 3. Excellent wear resistance with lower friction
- 4. High level thermal conductivity
- 5. Minimum overall dimensions
- 6. Chemical resistance
- 7. Can be worked under dry/marginal lubrication at short time, have much lower friction factor at initial moving Initial pre-lubrication at assembly required...

Typical Application

This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines.

CSB-T90(FT090) Bronze wrapped bearings with through holes

Dimensions of Standard Products See P87~90

Structure

CSB-T90 derive from CSB-090 bearings, but with the difference that the indentations on the sliding surface are replaced by through-holes which have a greater capacity to collect the lubricant compared with the indentations. These indents serve as lubricant reservoirs to rapidly build up a lubrication film in the start movement and therewith reduce the start friction. The material suitable for constructions, agriculture etc where high load and slow movement are occurring.

The bearing surface of the CSB-T90 should be reduced by 15% in consideration of the through-holes.

Chemical	Chemical compositions										
Material type	Cu%	Sn%	P%	Pb%	Zn%						
CSB-T90	91.3	8.5	0.2	1	1						

Tech. Data									
May Lood	Static	120N/mm ²		Hardness	HB 110-150				
Max. Load	Dynamic	40N/mm ²		Elongation	40%				
Max. Speed		2.5m/s		Temp.	-100℃~+200℃				
Max. PV		2.8N/mm ² *m/s		Friction coefficient	0.08~0.25				
Tensile strength 450N/i		450N/mm ²		Thermal conductivity	60W(m*k) ⁻¹				
Yield point		250N/mm ²		Coef. of thermal expansion	15*10⁻⁶k⁻¹				

Features

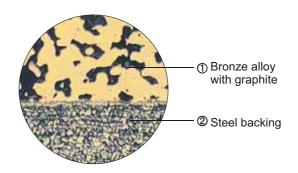
- 1. Easy of fitting and lubrication
- 2. High load capacity
- 3. Excellent wear resistance with lower friction
- 4. High level thermal conductivity
- 5. Minimum overall dimensions
- 6. Chemical resistance
- 7. Extended service life and lubrication intervals than normal CSB-090 type bearings
- 8. Free choice of lubricant
- 9. Collection of dust and rub off particles in the holes Initial pre-lubrication at assembly required...

Typical Application

This type of bushing is widely applied in hoisting machines and other construction machines, automobiles, tractors, trucks, machines tools and some mineral engines. It can be fabricated into bushes, half bearings, flanged bushes, trust washers, spherical bearing so on.

CSB850S Metal backed with bronze alloy graphite oilless bearings

Dimensions of Standard Products See P91~96



Structure

CSB850S is a composite multi-layer bearing composed of special sintered material used as sliding surfaces and steel material as backing metal. Sintered layers are of a special copper-nickel alloy containing uniformly dispersed solid lubricant, the main component of which is graphite. The solid lubricants will be released at the bearing surface as wear occurs, this will ensure have lower coefficient of friction during operation. In addition, these sintered layers have been processed by the oil impregnation treatment.

Features

Pertinence for motions of any direction due to solid lubricant dispersed evenly, with high performance even for very small motions. Apply for self-lubrication work condition, to aid lower start friction, we recommend to pre-lubricated if possible. Oiling would be drastically reduced. Very good load capacity with good wear resistance and lower friction, can be machined again after the parts fixed to get much high tolerance.

Tech. Data									
Mov Lood	Static	150N/mm ²	Temp.	-150℃~+250℃					
Max. Load	Dynamic	100N/mm ²	Friction coefficient	0.1~0.30					
Max. Speed	Dry	0.5m/s	Alloy hardness	>45HB					
Max. Speed	Lubrication	>1m/s	Alloy Hardriess	240ND					
Max. PV	Dry	1.5N/mm ² *m/s	Coefficient	14*10 ⁻⁶ k ⁻¹					
	Lubrication	2.5N/mm ² *m/s	of thermal expansion	14" 10" K					

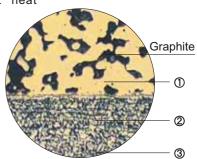
Typical Application

This material have been widely used in high load with lower friction and good wear resistance requested mechanical parts which oil given is difficulty. like

automotive Die wear plate, industrial robots, injection wear plate, injection Tie-bar bushes, construction machines self-lubricating bearings etc.

CSB850BM Metal backed with bronze graphite oilless bearings

Dimensions of Standard Products See P97~100



Structure

1.Sinter bronze powder with graphite: good wear resistance with lower friction and excellent load carrying capacity. Can be machined after fitting to get precision tolerance. CSB also can supply the bearings with PTFE or graphite sprayed layer on the work surface to get much lower start friction.

2. Metal backing: gives exceptionally high load carrying capacity, excellent heat dissipation.

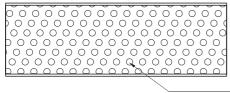
3.Copper plating **0.002mm**, good corrosion resistance.

Features

CSB850BM metal backed bronze with graphite lined bearing materials, sintered layers are of special copper alloy containing uniformly dispersed solid lubricants. The solid lubricant will be released at the bearing surface as wear occurs. To aid the running-in process, a thin film of solid lubricant can be applied to the bearing surface. This will be ensure a consistently low coefficient of friction with total freedom from stick-slip, even from initial assembly. The inner side can be machined after the parts fixed to get high tolerance.

Final machine after assembly

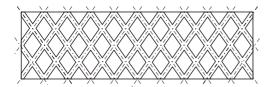
CSB850BM bearings with running-in film are pre-finished and should not e machined. In the event of damage during assembly, the spray material can be available for on-site repair.


The standard CSB850BM bearings can be manufactured, these material supplied without a running-in film, can be applied after final machining. The machined layer can not be exceed the sintered layer.

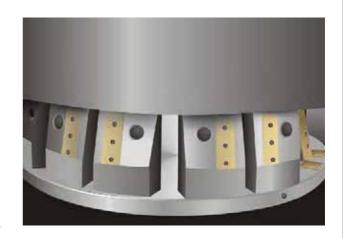
CSB850BM Metal backed with bronze graphite oilless bearings

Tech. Data											
CSB standar	d material	CSB850BM1	CSB850BM2	CSB850BM3	CSB850BM4						
Backing Met	al	steel	steel	stainless steel	Bronze						
	Composition	CuSn12+Gr	CuSn12Pb2+Gr	CuSn12+Gr	CuSn12+Gr						
Lining layer	Solid Lubricants	6%	10%	6%	6%						
Liffing layer	Hardness	>40HB	>40HB	>40HB	>40HB						
	Compressive strength	300N/mm ²	300N/mm ²	300N/mm ²	300N/mm ²						
Max. Load	Static	150N/mm ²	120N/mm ²	150N/mm ²	150N/mm ²						
IVIAX. LOAU	Dynamic	100N/mm ²	80N/mm ²	100N/mm ²	100N/mm ²						
Max. Speed		0.5m/s	0.5m/s	0.5m/s	0.5m/s						
Max. PV	Max. PV		1.5	1.5	1.5						
Friction coeff	ficient	0.1~0.3	0.06~0.3	0.1~0.3	0.1~0.3						
Temp. ℃		-150~+250	-150~+250	-150~+250	-150~+250						

Bearing surface


The standard bearings we supply as plain surface, also we supply with cleaning grooves for small angular movements or in the presence of abrasive media or dirt, and indented surface for grease lubricated applications.

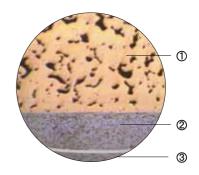
Lubrication pocket


Indented surface for grease lubricated applications.

Cleaning grooves for small angular movements or in the presence of abrasive media or dirt.

Typical Application

The special structure of the material suitable for hostile environments, for high load application which lubrication is difficult. Now CSB850BM has been widely used in water turbines, vane controls, injection molding machinery, packing machines, construction equipment, tire moulds, paper production machinery, furnace expansion plates, automotive transmission, heavy lifting chain linkage, food production equipment etc.


CSB-800 Steel with bronze powder bimetal bearings

Dimensions of Standard Products See P101~104

Structure

- **1.Sinter bronze powder:** good wear resistance and excellent load carrying capacity.
- **2. Steel backing:** gives exceptionally high load carrying capacity, excellent heat dissipation.
- **3.Copper plating 0.002mm**, good corrosion resistance.

Features

Steel backed lead bronze lined bearing material for lubricated applications, high load capacity and good fatigue properties, have been widely used in automotive, common industrial like steering gear, power steering, pedal bushes, king-pin bushes, tailgate pivots, mechanical handling, lifting equipment, hydraulic motors, agricultural machines etc.

Chemical compositions									
Material	Alloy composition	International standard	Alloy Hardness						
CSB-800	CuPb10Sn10	JIS-LBC3/SAE-797	HB70-100						
CSB-720	CuPb24Sn4	JIS-LBC6/SAE-799	HB45-70						
CSB-700	CuPb30	JIS-KJ3/SAE-48	HB30-45						
CSB-J20	AlSn20Cu	JIS-AJL/SAE-783	HB30-40						

Tech. Data									
Max. Load	Static	120N/mm ²	Yield Point	240N/mm ²					
Max. Load	Dynamic	60N/mm ²	Temp.	-40℃~+250℃					
Max. Speed		2m/s	Friction coefficient	0.08~0.20					
Max. PV 2.8N/mr		2.8N/mm ² *m/s	Thermal conductivity	60W(m*k) ⁻¹					
Breaking Load		350N/mm ²	Coef. of thermal expansion	14*10 ⁻⁶ k ⁻¹					

CSB450 Steel with bronze high precision bearings

Dimensions of Standard Products See P105~106

Structure

CSB450 is the Steel backed bronze alloy lined bearing material, the work surface can be produced the oil groove if requested which can improve the oil giving system. Characteristic compare with the traditional steel bushes this structure provides the material have lower friction, excellent wear resistance, higher temp. can bear etc. . Now the bearings have been succeed in the high speed mold & Die industries.

Structure

CSB450G the steel backed bronze alloy lined with solid lubricants for high load capacity and high speed application like the high speed press die etc. As the solid lubricants, so the bearing can be maintenance-free.

CSB452G Iron cast backed with solid lubricant bearing material, suit for high load capacity and high speed application like the high speed press die etc. This material provides good delivery and lower cost compare with CSB450G.

Tech. Data			
CSB Standard	CSB450	CSB450G	CSB452G
teSI e	≥45HRC	≥45HRC	Cast iron
Bronze alloy	≥80HB	≥80HB	≥160HB
Max. Static load	50N/mm ²	50N/mm ²	50N/mm ²
Max. Dynamic load	30N/mm ²	30N/mm ²	30N/mm ²
Max. Speed	1.2m/s	2m/s	1.5m/s
Max. PV	1.2N/mm ² *m/s	1.8N/mm ² *m/s	1.5N/mm ² *m/s
Friction coefficient	0.05~+0.20	0.03~+0.15	0.03~+0.15
Temp. (℃)	-50~+250	-50~+250	-50~+250

CSB-SNF Powder sintered bearings

Features

- 1. Good wear resistance with lower friction
- 2. Lower maintenance requirement
- 3. Lower the material cost for large production
- 4. High speed with lower noise
- 5. Can be machined again after installation if possible
- 6. Can produced different structure as special request

Structure

The base material for sintered parts such as sliding bearings or other formed parts are iron, bronze, iron with bronze and other metal in powder form. This powder is formed under high pressure in dies into a temperature which is just below the melting point. According to the work condition, the bearings can impregnated different oil or solid lubricants for the self-lubricating.

Sintered self-lubricating bearings are the ideal and economical solution for applications where lubrication is difficult or can not be given.

Tolerance

Inside Diameter ID: F7

Outside Diameter OD: r7

Flange Diameter: js13

Flange Thickness: js13

Length: js13

Main m	Main material supply												
			Chemic	al comp	ositions				Mechanica	l Properties	3		
Material type	Fe	С	Cu	Sn	Zn	Pb	others	Density g/cm³	Oil %	Pressure stress kgf/mm²	НВ		
SNF-11	<0.5	0.5~2.0	Remain	5~7	5~7	2~4	<1.5	6.4	≥18	>15	20~50		
SNF-12	<0.5	0.5~2.0	Remain	5~7	5~7	2~4	<1.5	6.8	≥12	>20	30~60		
SNF-21	<0.5	0.5~2.0	Remain	8~11	_		<1.0	6.0	≥25	>15	25~55		
SNF-22	<0.5	0.5~2.0	Remain	8~11	_		<1.0	6.4	≥18	>20	35~65		
SNF-31	Remain	_	18~22	_	_	_	<3	6.0	≥18	>30	30~60		
SNF-32	Remain	_	18~22	_	_	_	<3	6.4	≥12	>35	40~70		
SNF-41	Remain	<1.0	_	_	_	_	<3	6.0	≥18	>15	30~60		
SNF-42	Remain	<1.0	_	_	_	_	<3	6.4	≥12	>20	40~70		
SNF-51	Remain	0.25~0.6		70~90				6.4	≥18	>30	30~60		
SNF-52	Remain	0.25~0.6		50-	~70		<3	6.8	≥12	>25	40~70		

JOCU Oilless unit parts

Dimensions of Standard Products See P107~109

This JOCU unit allows smooth removal of various core blocks at the desired angle with completely no lubrication. The CAM can be supply as special request.

The other materials

CSB-EP Plastic compound bearings

Dimensions of Standard Products See P111~114

Structure

New economic self-lubricating bearings made by kinds of resin with additive fibre as base material produced by injection molding machines. The application for high load with lower speed and lower friction request, like automotive industries, lift machineries, copier, OA machines, sports machines, food industries, chemical machines etc. compare with the metal bushes, the weight and cost is much lower. Suite for large production with low cost and short delivery time.

Features

- 1. Design for dry and maintenance-free
- 2. Lower friction, excellent wear resistance
- 3. Higher load capacity
- 4. Excellent chemical resistance
- 5. Lower moisture absorption
- 6. Thin wall thickness design, reduce the space and weight
- 7. Can reduced cost when mass production
- 8. No special request for matting material

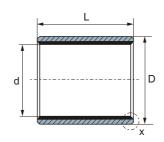
Material selection

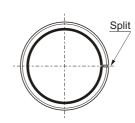
The user can select the bearing by temp. of work environment, wear resistance request, moving method, installation method, the cos of the material etc. Normally the temp., load and PV value should be firstly consideration. We recommend design lower PV value will leads to longer service life. Please select the correct one refer the attached material table.

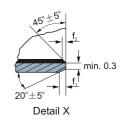
Bearing Installation

we recommend the housing as H7 and the shaft as h9. The ID shown in the size table is after fitting in the ring gauge($\pm~0.002$ mm). The bearing, housing and fitting tools must be kept clean during fitting. To make the fit easy should be have the chamfer on the housing and shaft, if possible the pre-lubrication is much better for getting lower start friction.

CSB-EP Main materials supply


Designation	Test method	Unit	CSB-EP	CSB-EP1	CSB-EP2	CSB-EP3
Basic features			Normal	Special	Economic	Improved
Common capability						
Density	ISO1183	g/cm³	1.46	1.51	1.29	1.24
Dynamic friction /steel(dry)			0.05~0.20	0.08~0.20	0.07~0.20	0.08~0.20
Max. PV (dry)		N/mm²*m/s	0.4	0.6	0.5	0.6
Mechanical capability						
Tensile strength	ISO527	N/mm²	>40	>42	>45	>60
Compressive strength	ISO527	N/mm²	>75	>70	>80	>100
E-module	ISO527	N/mm²	>1300	>1700	>1500	>1500
Max. static pressure of the surface, 20°C		N/mm²	>70	>70	>70	>100
Charpy notched impact strength 30 ℃	ISO179-2	Kj/m²	3	3	10	11
Hardness, rockwell	ISO2039-2	HRR	108	115	111	107
Physical and thermal capaciability						
Continuous work temperature		${\mathbb C}$	-40/+80	-40/+100	-40/+120	-40/+150
Short-time work temperature		$^{\circ}$ C	-70/+120	-70/+150	-70/+170	-70/+200
Thermal conductivity	ASTME1461	W/m.k	0.20	0.25	0.25	0.20
Linear coef. Of thermal expansion	ASTMD696	k ⁻¹ .10 ⁻⁵	10.0	8.0	10.0	9.0
Moisture absorption RH50/23℃	ASTMD570	%	0.20	0.10	0.05	1.80
Electrically conductivity capability						
Volume resistivity	IEC60093	Ω .cm	>1012	>1014	>1014	>1012
Surface resistivity	IEC60093	Ω	>10 ¹⁵	>10 ¹⁵	>10 ¹⁵	>1012
Flammability	UL94		НВ	V-0	V-0	V-0
Colour			Dark Grey	Red brown	Olive	Grey
Price level			2	2	1	3

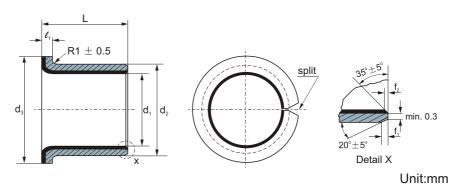



CSB-EP4	CSB-EP5	CSB-EP6	CSB-EP7	CSB-EP8	CSB-EP9	CSB-EP10
Anti-corrosive	High function	Food-used	Anti-wear	Anti-water	Electric conductivity	High temperature
1.56	1.38	1.35	1.20	1.50	1.49	1.52
0.10~0.30	0.09~0.25	0.05~0.18	0.09~0.20	0.08~0.25	0.09~0.25	0.05~0.20
1.5	2.0	0.3	0.7	1.3	0.5	2.5
>60	>65	>40	>65	>60	>40	>70
>80	>120	>70	>115	>85	>80	>120
>3200	>2000	>1300	>1500	>3200	>1500	>2000
>85	>110	>70	>110	>90	>75	>110
2	5	4	13	3	3	8
118	120	108	108	117	113	121
-40/+200	-100/+250	-40/+80	-40/+150	-40/+200	-40/+100	-100/+300
-70/+240	-130/+300	-70/+120	-70/+200	-70/+240	-70/+150	-130/+400
0.30	0.20	0.20	0.20	0.30	0.20	0.40
4.0	7.0	10.0	9.0	3.0	9.5	2.5
0.04	0.10	0.30	1.80	0.03	0.10	0.50
>10 ¹³	>107	>1012	>1012	>1013	<10²	>1014
>1015	>108	>1015	>1012	>1015	1	>1015
V-0	V-0	НВ	V-0	V-0	V-0	V-0
Black	Black	White	Cream	Aubergine	Black	Black
4	5	1	3	4	3	6

CSB-10 Metric cylindrical bushes

Unit:mm

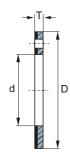
Axle	Housing H7	OD tolerance	ID after fixed	Wall thick- ness	f ₁	f ₂	L ⁰ _{-0.40} (d≤ \$30 L -0.3) (d> \$30 L -0.4)										
							6	8	10	12	15	20	25	30	40	50	60
6 -0.013 -0.028	8 +0.015	8 ^{+0.055} +0.025	5.990 6.055	0.980	0.6	0.3	CSB-10 0606	CSB-10 0608	CSB-10 0610								
8 ^{-0.013} -0.028	10 +0.015	10 ^{+0.055} _{+0.025}	7.990 8.055				CSB-10 0806	CSB-10 0808	CSB-10 0810	CSB-10 0812	CSB-10 0815						
10 -0.016	12 +0.018	12 ^{+0.065} _{+0.030}	9.990 10.058				CSB-10 1006	CSB-10 1008	CSB-10 1010	CSB-10 1012	CSB-10 1015	CSB-10 1020					
12 ^{-0.016} _{-0.034}	14 +0.018	14 ^{+0.065} _{+0.030}	11.990 12.058				CSB-10 1206	CSB-10 1208	CSB-10 1210	CSB-10 1212	CSB-10 1215	CSB-10 1220	CSB-10 1225				
13 ^{-0.016} _{-0.034}	15 +0.018	15 ^{+.0.065} _{+0.030}	12.990 13.058						CSB-10 1310			CSB-10 1320					
14 ^{-0.016} _{-0.034}	16 +0.018	16 +0.065 +0.030	13.990 14.058						1410	1412	1415	CSB-10 1420	1425				
15 ^{-0.016} _{-0.034}	17 +0.018	17 ^{+0.065} _{+0.030}	14.990 15.058						CSB-10 1510	CSB-10 1512	1515	CSB-10 1520	1525				
16 ^{-0.016} _{-0.034}	18 +0.018	18 +0.065 +0.030	15.990 16.058						CSB-10 1610	CSB-10 1612	CSB-10 1615	1620	CSB-10 1625				
17 ^{-0.016} _{-0.034}	19 +0.021	19 ^{+0.075} _{+0.035}	16.990 17.061						CSB-10 1710	CSB-10 1712		CSB-10 1720					
18 ^{-0.016} _{-0.034}	20 +0.021	20 +0.075 +0.035	17.990 18.061						CSB-10 1810	CSB-10 1812	CSB-10 1815	CSB-10 1820	CSB-10 1825				
20 -0.020 -0.041	23 +0.021	23 +0.035	19.990 20.071	1.475 1.505	0.6	0.4			CSB-10 2010	CSB-10 2012	CSB-10 2015	CSB-10 2020	CSB-10 2025	CSB-10 2030			
22 -0.020	25 +0.021	25 ^{+0.075} _{+0.035}	21.990 22.071						CSB-10 2210	CSB-10 2212	CSB-10 2215	CSB-10 2220	CSB-10 2225	CSB-10 2230			
24 -0.020	27 +0.021	27 ^{+0.075} _{+0.035}	23.990 24.071								CSB-10 2415	CSB-10 2420	CSB-10 2425	CSB-10 2430			
25 ^{-0.020} _{-0.041}	28 +0.021	28 ^{+0.075} _{+0.035}	24.990 25.071						CSB-10 2510	CSB-10 2512	CSB-10 2515	CSB-10 2520	CSB-10 2525	CSB-10 2530	2540	CSB-10 2550	
28 -0.020	32 +0.025	32 ^{+0.085} _{+0.045}	27.990 28.085	1.970	1.2	0.4					CSB-10 2815	CSB-10 2820	CSB-10 2825	CSB-10 2830	CSB-10 2840		
30 -0.020	34 +0.025	34 +0.085 +0.045	29.990 30.285							3012	CSB-10 3015	3020	3025	3030	3040		
32 ^{-0.025} _{-0.050}	36 +0.025	36 ^{+0.085} _{+0.045}	31.990 32.085									CSB-10 3220		3230	CSB-10 3240		
35 ^{-0.025} _{-0.050}	39 +0.025	39 ^{+0.085} _{+0.045}	34.990 35.085							CSB-10 3512	3515	3520	CSB-10 3525	3530	CSB-10 3540	CSB-10 3550	
38 -0.025	42 +0.025	42 ^{+0.085} _{+0.045}	37.990 38.085								CSB-10 3815			CSB-10 3830	CSB-10 3840		
40 -0.025	44 +0.025	44 ^{+0.085} +0.045	39.990 40.085							CSB-10 4012		CSB-10 4020	CSB-10 4025	CSB-10 4030	CSB-10 4040	CSB-10 4050	

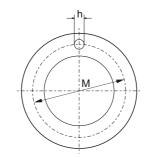

CSB-10 Metric cylindrical bushes

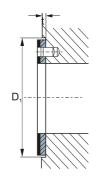
Unit[·]mm

															U	nit:mm
Axle	Housing		ID after	Wall thick-	f ₁	f ₂					L.	0 0.40				
		tolerance		ness	1	12	20	25	30	40	50	60	70	80	100	115
45 -0.025	50 +0.025	50 +0.085 +0.045	44.990 45.105				CSB-10 4520	CSB-10 4525	CSB-10 4530	CSB-10 4540	CSB-10 4550					
		55 ^{+0.100} _{+0.055}					CSB-10 5020		CSB-10 5030	CSB-10 5040	CSB-10 5050	CSB-10 5060				
		60 +0.100 +0.055		0.400					CSB-10 5530	CSB-10 5540	CSB-10 5550	CSB-10 5560				
		65 +0.100 +0.055		2.460 2.505		0.6			CSB-10 6030	CSB-10 6040	CSB-10 6050	CSB-10 6060	CSB-10 6070			
		70 +0.100 +0.055							CSB-10 6530	CSB-10 6540	CSB-10 6550	CSB-10 6560	CSB-10 6570			
		75 ^{+0.100} _{+0.055}								CSB-10 7040	CSB-10 7050	CSB-10 7060	CSB-10 7070	CSB-10 7080		
		80 +0.100 +0.055							CSB-10 7530	CSB-10 7540	CSB-10 7550	CSB-10 7560	CSB-10 7570	CSB-10 7580		
		85 +0.120 +0.070								CSB-10 8040	CSB-10 8050	CSB-10 8060	CSB-10 8070	CSB-10 8080	CSB-10 80100	
		90 +0.120 +0.070								CSB-10 8540		CSB-10 8560		CSB-10 8580	CSB-10 85100	
		95 +0.120 +0.070		2.440 2.490						CSB-10 9040	CSB-10 9050	CSB-10 9060		CSB-10 9080	CSB-10 90100	
		100+0.120				0.6					CSB-10 9550	CSB-10 9560		CSB-10 9580	CSB-10 95100	
		105 ^{+0.120} _{+0.070}									CSB-10 10050	CSB-10 10060		CSB-10 10080		CSB-10 100115
105 _{-0.035}	110 ^{+0.035}	110 ^{+0.120} _{+0.070}	105.020 105.155									CSB-10 10560		CSB-10 10580		CSB-10 105115
110 -0.035												CSB-10 11060		CSB-10 11080		CSB-10 110115
		125 ^{+0.170} _{+0.100}										CSB-10 12060		CSB-10 12080	CSB-10 120100	
		130+0.170										CSB-10 12560			CSB-10 125100	CSB-10 125115
		135 ^{+0.170} _{+0.100}		2.415		0.6						CSB-10 13060		CSB-10 13080	CSB-10 130100	
		145 ^{+0.170} _{+0.100}		2.465	1.0	0.0						CSB-10 14060		CSB-10 14080	CSB-10 140100	
		155 ^{+0.170} _{+0.100}										CSB-10 15060		CSB-10 15080	CSB-10 150100	
160 _{-0.040}												CSB-10 16060		CSB-10 16080	CSB-10 160100	CSB-10 160115
180 _{-0.040}	185 ^{+0.046}	185 ^{+0.210} _{+0.130}	180.070 180.216											CSB-10 18080	CSB-10 180100	
190 _{-0.046}				2.415	1.8	0.6								CSB-10 19080	CSB-10 190100	
200 _{-0.046}				2.465	1.0	0.0						CSB-10 20060		CSB-10 20080	CSB-10 200100	
220 _{-0.046}														CSB-10 22080	CSB-10 220100	
250 _{-0.046}														CSB-10 25080	CSB-10 250100	
260 _{-0.052}				2.415	1.8	0.6								CSB-10 26080	CSB-10 260100	
280 _{-0.052}				2.465	1.0	0.0								CSB-10 28080	CSB-10 280100	
300 _{-0.052}	305 ^{+0.052}	305 ^{+0.260} _{+0.170}	300.070 300.222											CSB-10 30080	CSB-10 300100	

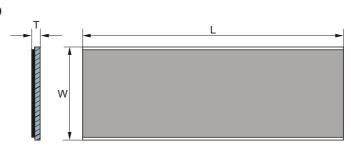
CSB-10 Metric flange bushes


	Housing	OD	ID after	D	Wall	£				Dimens		nicmm
Axle	H7	tolerance	fixed	Designation	thickness	f ₁	f ₂	d₁	d ₂	d ₃ ±0.5	L±0.25	ℓ ₁ -0.2
-0.013	8 +0.015	+0.055	5.990	CSB-10F06040				_	_	40	4	
6 -0.028	8	6 +0.025	6.005	CSB-10F06070				6	8	12	7	
8 -0.013	10 +0.015	8 +0.055	7.990	CSB-10F08055				8	10	15	5.5	
-0.028	10	+0.025	8.055	CSB-10F08075				0	10	15	7.5	
0.040		.0.055	0.000	CSB-10F10070							7	
10 ^{-0.016} _{-0.034}	12 +0.018	10 +0.055 +0.025	9.990 10.058	CSB-10F10090				10	12	18	9	
			10.000	CSB-10F10120							12	
0.040		.0.005	44.000	CSB-10F12070							7	
12 ^{-0.016}	14 +0.018	12 +0.065 +0.030	11.990 12.058	CSB-10F12090				12	14	20	9	
			12.000	CSB-10F12120	+0.005	0.6	0.3				12	1
14 ^{-0.016} _{-0.034}	16 ^{+0.018}	14 ^{+0.065} _{+0.030}	13.990	CSB-10F14120	-0.020	0.0	0.5	14	16	22	12	'
-0.034	10	+0.030	14.058	CSB-10F14170				14	10	22	17	
				CSB-10F15090							9	
15 ^{-0.016} _{-0.034}	17 ^{+0.018}	15 ^{+0.065} _{+0.030}	14.990 15.058	CSB-10F15120				15	17	23	12	
-0.054		10.030	15.056	CSB-10F15170							17	
16 ^{-0.016}	18 ^{+0.018}	16 ^{+0.065} _{+0.030}	15.990	CSB-10F16120				16	18	24	12	
-0.034	10	+0.030	16.058	CSB-10F16170				10	10	24	17	
				CSB-10F18120							12	
18 ^{-0.016}	20 +0.021	18 ^{+0.065} _{+0.030}	17.990	CSB-10F18170				18	20	26	17	
0.004		70.000	18.061	CSB-10F18200							20	
				CSB-10F20115							11.5	
20 ^{-0.020} _{-0.041}	23 +0.021	20 +0.075 +0.035	19.990	CSB-10F20165				20	23	30	16.5	
-0.041		10.033	20.071	CSB-10F20215							21.5	
22 -0.020	25 ^{+0.021}	22 ^{+0.075} _{+0.035}	21.990	CSB-10F22150	+0.005	0.6	0.4	22	25	32	15	1.5
-0.041	25	+0.035	22.071	CSB-10F22200	-0.025	0.6	0.4		25	32	20	1.5
0.000		.0.075	04.000	CSB-10F25115							11.5	
25 ^{-0.020} _{-0.041}	28 +0.021	25 ^{+0.075} _{+0.035}	24.990 25.071	CSB-10F25165				25	28	35	16.5	
			20.071	CSB-10F25215							21.5	
30 -0.025	34 +0.025	30 ^{+0.075} _{+0.035}	29.990	CSB-10F30160				30	34	40	16	
30 _{-0.050}	34	30 +0.035	30.085	CSB-10F30260				30	34	42	26	
35 ^{-0.025} _{-0.050}	39 ^{+0.025}	35 ^{+0.085} _{+0.045}	34.990	CSB-10F35160	+0.005	1.2	0.4	25	20	47	16	2
35 _{-0.050}	39	35 _{+0.045}	35.085	CSB-10F35260	-0.030	1.2	0.4	35	39	47	26	2
40 -0.025	44 +0.025	40 +0.085	39.990	CSB-10F40260				40	11	E2	26	
40 -0.025	44	40 +0.085 +0.045	40.085	CSB-10F40400				40	44	53	40	




CSB-10 Metric thrust washer and strip

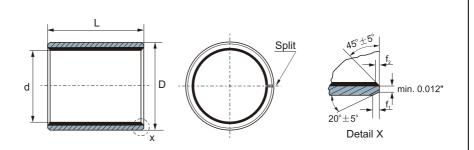
Metric thrust washer



Unit:mm

								Officialiti
Axle	Designation		Washer of	dimension		Installati	on size	D +0 12
Axie	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t±0.2	D₁+0.12
8	CSB-10WC10	10	20		15	1.5		20
10	CSB-10WC12	12	24		18	1.5		24
12	CSB-10WC14	14	26		20			26
14	CSB-10WC16	16	30		23	2		30
16	CSB-10WC18	18	32		25			32
18	CSB-10WC20	20	36		28		1	36
20	CSB-10WC22	22	38	1.5	30	3	I	38
22	CSB-10WC24	24	42		33	3		42
24	CSB-10WC26	26	44		35			44
26	CSB-10WC28	28	48		38			48
30	CSB-10WC32	32	54		43			54
36	CSB-10WC38	38	62		50			62
40	CSB-10WC42	42	66		54	4		66
46	CSB-10WC48	48	74		61			74
50	CSB-10WC52	52	78	2	65		1.5	78
60	CSB-10WC62	62	90		76			90

Metric standard strip

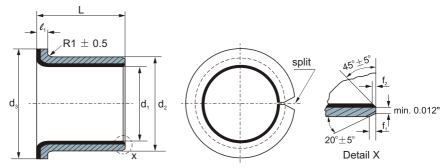


Туре	Length±1	Width±1	Thickness -0.05
CSB-10SP	500	150	1.0
CSB-10SP	500	150	1.5
CSB-10SP	500	150	2.0
CSB-10SP	500	150	2.5

CSB-10 Inch cylindrical bushes

Unit: inch"

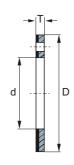
Recom	mended	Installed							
Shaft Dia	Housing bore	bearing d				Length±0.0	10		
0.1243 0.1236	0.1878 0.1873	0.1268 0.1243	CSB-10 02IB02	CSB-10 02IB03					
0.1554 0.1547	0.2191 0.2186	0.1581 0.1556	CSB-10 025IB025	CSB-10 025IB04					
0.1865 0.1858	0.2503 0.2497	0.1893 0.1867	CSB-10 03IB03	CSB-10 03IB04	CSB-10 03IB06				
0.2490 0.2481	0.3128 0.3122	0.2518 0.2492	CSB-10 04IB04	CSB-10 04IB06					
0.3115 0.3106	0.3753 0.3747	0.3143 0.3117	CSB-10 05IB06	CSB-10 05IB08					
0.3740 0.3731	0.4691 0.4684	0.3769 0.3742	CSB-10 06IB03	CSB-10 06IB04	CSB-10 06IB06	CSB-10 06IB08	CSB-10 06IB10	CSB-10 06IB12	
0.4365 0.4355	0.5316 0.5309	0.4394 0.4367	CSB-10 07IB08	CSB-10 07IB12					
0.4990 0.4980	0.5941 0.5934	0.5019 0.4992	CSB-10 08IB04	CSB-10 08IB06	CSB-10 08IB08	CSB-10 08IB10	CSB-10 08IB12	CSB-10 08IB14	
0.5615 0.5605	0.6566 0.6559	0.5644 0.5617	CSB-10 09IB06	CSB-10 09IB08	CSB-10 09IB10	CSB-10 09IB12			
0.6240 0.6230	0.7192 0.7184	0.6270 0.6242	CSB-10 10IB04	CSB-10 10IB08	CSB-10 10IB10	CSB-10 10IB12	CSB-10 10IB14	CSB-10 10IB16	
0.6865 0.6855	0.7817 0.7809	0.6895 0.6867	CSB-10 11IB14						
0.7491 0.7479	0.8755 0.8747	0.7525 0.7493	CSB-10 12IB04	CSB-10 12IB06	CSB-10 12IB08	CSB-10 12IB10	CSB-10 12IB12	CSB-10 12IB16	
0.8116 0.8104	0.9380 0.9372	0.8150 0.8118	CSB-10 13IB12	CSB-10 13IB18					
0.8741 0.8729	1.0005 0.9997	0.8775 0.8743	CSB-10 14IB04	CSB-10 14IB06	CSB-10 14IB12	CSB-10 14IB16	CSB-10 14IB20		
0.9991 0.9979	1.1255 1.1247	1.0025 0.9993	CSB-10 16IB06	CSB-10 16IB08	CSB-10 16IB12	CSB-10 16IB16	CSB-10 16IB20	CSB-10 16IB24	
1.1238 1.1226	1.2818 1.2808	1.1278 1.1240	CSB-10 18IB06	CSB-10 18IB10	CSB-10 18IB12	CSB-10 18IB16			
1.2488 1.2472	1.4068 1.4058	1.2528 1.2490	CSB-10 20IB06	CSB-10 20IB12	CSB-10 20IB14	CSB-10 20IB16	CSB-10 20IB20	CSB-10 20IB28	
1.3738 1.3722	1.5318 1.5308	1.3778 1.3740	CSB-10 22IB12	CSB-10 22IB12	CSB-10 22IB24	CSB-10 22IB28			
1.4988 1.4972	1.6568 1.6558	1.5028 1.4990	CSB-10 24IB08	CSB-10 24IB16	CSB-10 24IB18	CSB-10 24IB20	CSB-10 24IB24	CSB-10 24IB32	
1.6238 1.6222	1.7818 1.7808	1.6278 1.6240	CSB-10 26IB16	CSB-10 26IB24					
1.7487 1.7471	1.9381 1.9371	1.7535 1.7489	CSB-10 28IB16	CSB-10 28IB24	CSB-10 28IB32				
1.8737 1.8721	2.0633 2.0621	1.8787 1.8739	CSB-10 30IB12	CSB-10 30IB16	CSB-10 30IB36				
1.9987 1.9969	2.1883 2.1871	2.0037 1.9989	CSB-10 32IB08	CSB-10 32IB16	CSB-10 32IB24	CSB-10 32IB28	CSB-10 32IB32	CSB-10 32IB40	

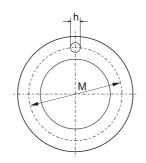

CSB-10 Inch cylindrical bushes

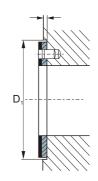
Unit: inch"

											UI	nit: inch"
Recom	mended	Installed						1.0.040				
Shaft Dia	Housing bore	bearing d					Length	±0.010				
2.1257 2.1239	2.3130 2.3118	2.1326 2.1262	CSB-10 34IB48									
2.2507 2.2489	2.4377 2.4365	2.2573 2.2509	CSB-10 36IB28	CSB-10 36IB32	CSB-10 36IB40	CSB-10 36IB48	CSB-10 36IB56	CSB-10 36IB60	CSB-10 36IB64	CSB-10 36IB72		
2.5011	2.6881	2.5077	CSB-10	CSB-10	CSB-10							
2.4993	2.6869	2.5013	40IB16	40IB26	40IB32	40IB40	40IB48	40IB56	40IB60	40IB64	40IB72	40IB76
2.7500	2.9370	2.7566	CSB-10	CSB-10	CSB-10							
2.7482	2.9358	2.7502	44IB32	44IB36	44IB40	44IB48	44IB56	44IB60	44IB64	44IB72	44IB76	44IB80
2.8752	3.0623	2.8819	CSB-10	CSB-10	CSB-10							
2.8734	3.0610	2.8754	46IB32	46IB36	46IB40	46IB48	46IB56	46IB60	46IB64	46IB72	46IB76	46IB80
3.0000	3.1872	3.0068	CSB-10	CSB-10	CSB-10							
2.9982	3.1858	3.0002	48IB32	48IB36	48IB40	48IB48	48IB56	48IB60	48IB64	48IB72	48IB76	48IB80
3.2500	3.4372	3.2568	CSB-10	CSB-10	CSB-10							
3.2480	3.4358	3.2502	52IB32	52IB36	52IB40	52IB48	52IB56	52IB60	52IB64	52IB72	52IB76	52IB80
3.5000	3.6872	3.5068	CSB-10	CSB-10	CSB-10							
3.4978	3.6858	3.5002	56IB32	56IB36	56IB40	56IB48	56IB56	56IB60	56IB64	56IB72	56IB76	56IB80
3.6250	3.8122	3.6318	CSB-10	CSB-10	CSB-10							
3.6228	3.8108	3.6252	58IB32	58IB36	58IB40	58IB48	58IB56	58IB60	58IB64	58IB72	58IB76	58IB80
3.7500	3.9372	3.7568	CSB-10	CSB-10	CSB-10							
3.7478	3.9358	3.7502	60IB32	60IB36	60IB40	60IB48	60IB56	60IB60	60IB64	60IB72	60IB76	60IB80
4.0000	4.1872	4.0068	CSB-10	CSB-10	CSB-10							
3.9978	4.1858	4.0002	64IB32	64IB36	64IB40	64IB48	64IB56	64IB60	64IB64	64IB72	64IB76	64IB80
4.2500	4.4372	4.2568	CSB-10	CSB-10	CSB-10							
4.2478	4.4358	4.2502	68IB32	68IB36	68IB40	68IB48	68IB56	68IB60	68IB64	68IB72	68IB76	68IB80
4.3750	4.5622	4.3818	CSB-10	CSB-10	CSB-10							
4.3728	4.5608	4.3752	70IB32	70IB36	70IB40	70IB48	70IB56	70IB60	70IB64	70IB72	70IB76	70IB80
4.5000	4.6872	4.5068	CSB-10	CSB-10	CSB-10							
4.4978	4.6858	4.5002	72IB32	72IB36	72IB40	72IB48	72IB56	72IB60	72IB64	72IB72	72IB76	72IB80
4.7500	4.9374	4.7572	CSB-10	CSB-10	CSB-10							
4.7475	4.9358	4.7502	76IB32	76IB36	76IB40	76IB48	76IB56	76IB60	76IB64	76IB72	76IB76	76IB80
4.9986	5.1860	5.0056	CSB-10	CSB-10	CSB-10							
4.9961	5.1844	4.9988	80IB32	80IB36	80IB40	80IB48	80IB56	80IB60	80IB64	80IB72	80IB76	80IB80
5.2500	5.4374	5.2570	CSB-10	CSB-10	CSB-10							
5.2475	5.4358	5.2502	84IB32	84IB36	84IB40	84IB48	84IB56	84IB60	84IB64	84IB72	84IB76	84IB80
5.5000	5.6874	5.5070	CSB-10	CSB-10	CSB-10							
5.4975	5.6858	5.5002	88IB32	88IB36	88IB40	88IB48	88IB56	88IB60	88IB64	88IB72	88IB76	88IB80
5.7500	5.9374	5.7570	CSB-10	CSB-10	CSB-10							
5.7475	5.9358	5.7502	92IB32	92IB36	92IB40	92IB48	92IB56	92IB60	92IB64	92IB72	92IB76	92IB80
6.0000	6.1874	6.0070	CSB-10	CSB-10	CSB-10							
5.9975	6.1858	6.0002	96IB32	96IB36	96IB40	96IB48	96IB56	96IB60	96IB64	96IB72	96IB76	96IB80
6.2500	6.4374	6.2570	CSB-10	CSB-10	CSB-10							
6.2475	6.4358	6.2502	100IB32	100IB36	100IB40	100IB48	100IB56	100IB60	100IB64	100IB72	100IB76	100IB80
6.5000	6.6874	6.5070	CSB-10	CSB-10	CSB-10							
6.4975	6.6858	6.5002	104IB32	104IB36	104IB40	104IB48	104IB56	104IB60	104IB64	104IB72	104IB76	104IB80
6.7500	6.9374	6.7570	CSB-10	CSB-10	CSB-10							
6.7475	6.9358	6.7502	108IB32	108IB36	108IB40	108IB48	108IB56	108IB60	108IB64	108IB72	108IB76	108IB80
6.9954	7.1830	7.0026	CSB-10	CSB-10	CSB-10							
6.9929	7.1812	6.9956	112IB32	112IB36	112IB40	112IB48	112IB56	112IB60	112IB64	112IB72	112IB76	112IB80

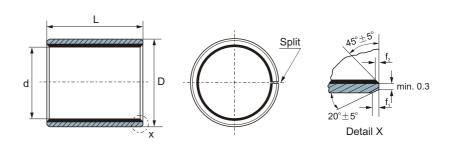
CSB-10 Inch flange bushes


Unit: inch"


Shaft Dia	Housing Bore	Installed Bearing d₁	Nominal Flange d₃	Flange Thickness $\ell_{\scriptscriptstyle 1}$		Length	±0.010	
0.3750	0.4691	0.3779	11/16	0.052	CSB-10	CSB-10	CSB-10	CSB-10
0.3740	0.4684	0.3752		0.044	06FIB04	06FIB06	06FIB08	06FIB12
0.5000	0.5941	0.5029	13/16	0.052	CSB-10	CSB-10	CSB-10	CSB-10
0.4990	0.5934	0.5002		0.044	08FIB04	08FIB06	08FIB08	08FIB12
0.6250	0.7192	0.6280	15/16	0.052	CSB-10	CSB-10	CSB-10	CSB-10
0.6240	0.7184	0.6252		0.044	10FIB06	10FIB08	10FIB10	10FIB12
0.7500	0.8755	0.7534	1-1/8	0.068	CSB-10	CSB-10	CSB-10	CSB-10
0.7488	0.8747	0.7502		0.060	12FIB06	12FIB08	12FIB12	12FIB16
0.8750	1.0005	0.8784	1-1/5	0.068	CSB-10	CSB-10	CSB-10	CSB-10
0.8738	0.9997	0.8752		0.060	14FIB08	14FIB12	14FIB16	14FIB20
1.0000	1.1255	1.0034	1-3/8	0.068	CSB-10	CSB-10	CSB-10	CSB-10
0.9988	1.1247	1.0002		0.060	16FIB08	16FIB12	16FIB16	16FIB20
1.2500 1.2484	1.4068 1.4058	1.2540 1.2502	1-3/4	0.083 0.075	CSB-10 20FIB16	CSB-10 20FIB20	CSB-10 20FIB24	
1.5000 1.4984	1.6568 1.6558	1.5040 1.5002	2	0.083 0.075	CSB-10 24FIB16	CSB-10 24FIB24	CSB-10 24FIB32	
1.7500 1.7484	1.9381 1.9371	1.7548 1.7502	2-3/8	0.098 0.090	CSB-10 28FIB16	CSB-10 28FIB24	CSB-10 28FIB32	



CSB-10 Inch thrust washer

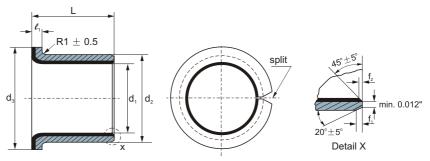


Unit: inch"

		Washer	dimension		I	nstallation siz	ze
Designation	Inner side d +0.010	Outside D -0.010	Т	M -0.01	h +0.010	t±0.010	D ₁ +0.010
CSB-10WC06IB	0.500	0.875		0.692	0.067		0.875
CSB-10WC07IB	0.562	1.000		0.786	0.067		1.000
CSB-10WC08IB	0.625	1.125		0.880			1.125
CSB-10WC09IB	0.687	1.187		0.942	0.000		1.187
CSB-10WC10IB	0.750	1.250		1.005	0.099		1.250
CSB-10WC11IB	0.812	1.375		1.099		0.04	1.375
CSB-10WC12IB	0.875	1.500	0.0630	1.192		0.04	1.500
CSB-10WC13IB	0.937	1.625		1.286	0.130		1.625
CSB-10WC14IB	1.000	1.750	0.0610	1.380			1.750
CSB-10WC16IB	1.125	2.000		1.567			2.000
CSB-10WC18IB	1.250	2.125		1.692	0.161		2.125
CSB-10WC20IB	1.375	2.250		1.817			2.250
CSB-10WC22IB	1.500	2.500		2.005			2.500
CSB-10WC24IB	1.625	2.625		2.130			2.625
CSB-10WC26IB	1.750	2.750		2.255			2.750
CSB-10WC28IB	2.000	3.000	0.0930	2.505	0.192	0.07	3.000
CSB-10WC30IB	2.125	3.125		2.630			3.125
CSB-10WC32IB	2.250	3.250	0.0910	2.755			3.250

CSB-50 Metric cylindrical bushes

Axle	Housing	OD	ID after	Wall thick-	f ₁	f ₂					L _{-0.40}		30 L -0.3 30 L -0.4				
Axic	H7	tolerance	fixed	ness	'1	'2	6	8	10	12	15	20	25	30	40	50	60
6 -0.013 -0.028	8 +0.015	8 ^{+0.055} +0.025	5.990 6.055				CSB-50 0606	CSB-50 0608	CSB-50 0610								
8 ^{-0.013} -0.028	10 +0.015	10 +0.055 +0.025	7.990 8.055				CSB-50 0806	CSB-50 0808	CSB-50 0810	CSB-50 0812	CSB-50 0815						
10 ^{-0.016} _{-0.034}	12 +0.018	12 ^{+0.065} _{+0.030}	9.990 10.058				CSB-50 1006	CSB-50 1008	CSB-50 1010	CSB-50 1012	CSB-50 1015	CSB-50 1020					
12 ^{-0.016} _{-0.034}	14 +0.018	14 ^{+0.065} _{+0.030}	11.990 12.058				CSB-50 1206	CSB-50 1208	CSB-50 1210	CSB-50 1212	CSB-50 1215	CSB-50 1220	CSB-50 1225				
13 ^{-0.016} _{-0.034}	15 +0.018	15 ^{+.0.065} _{+0.030}	12.990 13.058	0.980					CSB-50 1310			CSB-50 1320					
14 ^{-0.016} _{-0.034}	16 +0.018	16 ^{+0.065} _{+0.030}	13.990 14.058	1.005	0.6	0.3			CSB-50 1410	CSB-50 1412	CSB-50 1415	CSB-50 1420	CSB-50 1425				
15 ^{-0.016} _{-0.034}	17 +0.018	17 ^{+0.065} _{+0.030}	14.990 15.058						CSB-50 1510	CSB-50 1512	CSB-50 1515	CSB-50 1520	CSB-50 1525				
16 ^{-0.016} _{-0.034}	18 +0.018	18 ^{+0.065} _{+0.030}	15.990 16.058						CSB-50 1610	CSB-50 1612	CSB-50 1615	CSB-50 1620	CSB-50 1625				
17 ^{-0.016} _{-0.034}	19 +0.021	19 ^{+0.075} _{+0.035}	16.990 17.061						CSB-50 1710	CSB-50 1712		CSB-50 1720					
18 ^{-0.016} _{-0.034}	20 +0.021	20 +0.075 +0.035	17.990 18.061						CSB-50 1810	CSB-50 1812	CSB-50 1815	CSB-50 1820	CSB-50 1825				
20 -0.020 -0.041	23 +0.021	23 ^{-0.075} _{+0.035}	19.990 20.071						CSB-50 2010	CSB-50 2012	CSB-50 2015	CSB-50 2020	CSB-50 2025	CSB-50 2030			
22 ^{-0.020} _{-0.041}	25 +0.021	25 ^{+0.075} _{+0.035}	21.990 22.071	1.475	0.0	0.4			CSB-50 2210	CSB-50 2212	CSB-50 2215	CSB-50 2220	CSB-50 2225	CSB-50 2230			
24 ^{-0.020} _{-0.041}	27 +0.021	27 ^{+0.075} _{+0.035}	23.990 24.071	1.505	0.6	0.4					CSB-50 2415	CSB-50 2420	CSB-50 2425	CSB-50 2430			
25 ^{-0.020} _{-0.041}	28 +0.021	28 ^{+0.075} _{+0.035}	24.990 25.071						CSB-50 2510	CSB-50 2512	CSB-50 2515	CSB-50 2520	CSB-50 2525	CSB-50 2530	CSB-50 2540	CSB-50 2550	
28 -0.020 -0.041	32 +0.025	32 ^{+0.085} _{+0.045}	27.990 28.085								CSB-50 2815	CSB-50 2820	CSB-50 2825	CSB-50 2830	CSB-50 2840		
30 ^{-0.020} _{-0.041}	34 +0.025	34 ^{+0.085} _{+0.045}	29.990 30.285							CSB-50 3012	CSB-50 3015	CSB-50 3020	CSB-50 3025	CSB-50 3030	CSB-50 3040		
32 ^{-0.025} _{-0.050}	36 +0.025	36 ^{+0.085} _{+0.045}	31.990 32.085	1.970 2.005	1.0	0.4						CSB-50 3220		CSB-50 3230	CSB-50 3240		
35 ^{-0.025} _{-0.050}	39 +0.025	39 ^{+0.085} _{+0.045}	34.990 35.085		1.2	0.4				CSB-50 3512	CSB-50 3515	CSB-50 3520	CSB-50 3525	CSB-50 3530	CSB-50 3540	CSB-50 3550	
38 ^{-0.025} _{-0.050}	42 +0.025	42 ^{+0.085} _{+0.045}	37.990 38.085								CSB-50 3815			CSB-50 3830	CSB-50 3840		
40 -0.025 -0.050	44 +0.025	44 ^{+0.085} +0.045	39.990 40.085							CSB-50 4012		CSB-50 4020	CSB-50 4025	CSB-50 4030	CSB-50 4040	CSB-50 4050	

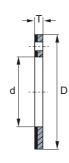


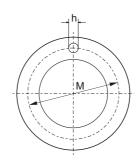
CSB-50 Metric cylinrical bushes

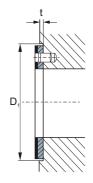
م دا م	Housing	OD	ID after	Wall thick-	£	£					L.	0 0.40				
Axle	H7	tolerance	fixed	ness	f ₁	f ₂	20	25	30	40	50	60	70	80	100	115
45 ^{-0.025} _{-0.050}	50 +0.025	50 ^{+0.085} _{+0.045}	44.990 45.105				CSB-50 4520	CSB-50 4525	CSB-50 4530	CSB-50 4540	CSB-50 4550					
50 -0.025	55 ^{+0.030}	10.000					CSB-50 5020		CSB-50 5030	CSB-50 5040	CSB-50 5050	CSB-50 5060				
55 ^{-0.030} _{-0.060}	60 +0.030	60 ^{+0.100} _{+0.055}	54.990 55.110						CSB-50 5530	CSB-50 5540	CSB-50 5550	CSB-50 5560				
60 -0.030	65	65 ^{+0.100} _{+0.055}		2.460 2.505	1.8	0.6			CSB-50 6030	CSB-50 6040	CSB-50 6050	CSB-50 6060	CSB-50 6070			
	70 +0.030								CSB-50 6530	CSB-50 6540	CSB-50 6550	CSB-50 6560	CSB-50 6570			
		75 ^{+0.100} _{+0.055}								CSB-50 7040	CSB-50 7050	CSB-50 7060	CSB-50 7070	CSB-50 7080		
		80 +0.100 +0.055	74.990 75.110						CSB-50 7530	CSB-50 7540	CSB-50 7550	CSB-50 7560	CSB-50 7570	CSB-50 7580		
-0.030		10.070								CSB-50 8040	CSB-50 8050	CSB-50 8060	CSB-50 8070	CSB-50 8080	CSB-50 80100	
		90 +0.120 +0.070								CSB-50 8540		CSB-50 8560		CSB-50 8580	CSB-50 85100	
		95 ^{+0.120} _{+0.070}		2.440 2.490						CSB-50 9040	CSB-50 9050	CSB-50 9060		CSB-50 9080	CSB-50 90100	
95 -0.035	100 ^{+0.035}	100+0.120	95.020 95.155		1.8	0.6					CSB-50 9550	CSB-50 9560		CSB-50 9580	CSB-50 95100	
		105 ^{+0.120} _{+0.070}									CSB-50 10050	CSB-50 10060		CSB-50 10080		CSB-50 100115
105 _{-0.035}	110 ^{+0.035}	110 ^{+0.120} _{+0.070}	105.020 105.155									CSB-50 10560		CSB-50 10580		CSB-50 105115
110 -0.035	115 ^{+0.035}	115 ^{+0.120} _{+0.070}	110.020 110.155									CSB-50 11060		CSB-50 11080		CSB-50 110115
120 _{-0.035}	125 ^{+0.040}	125+0.170	120.070 120.210									CSB-50 12060		CSB-50 12080	CSB-50 120100	
		130+0.170										CSB-50 12560			CSB-50 125100	CSB-50 125115
		135 ^{+0.170} _{+0.100}		2.415	1 0	0.6						CSB-50 13060		CSB-50 13080	CSB-50 130100	
		145 ^{+0.170} _{+0.100}		2.465	1.0	0.0						CSB-50 14060		CSB-50 14080	CSB-50 140100	
150 _{-0.040}	155 ^{+0.040}	155 ^{+0.170} _{+0.100}	150.070 150.210									CSB-50 15060		CSB-50 15080	CSB-50 150100	
		165 ^{+0.170} _{+0.100}										CSB-50 16060		CSB-50 16080	CSB-50 160100	CSB-50 160115
		185 ^{+0.210} _{+0.130}												CSB-50 18080	CSB-50 180100	
190 _{-0.046}	195 ^{+0.046}	195 ^{+0.210} _{+0.130}	190.070 190.216	2.415	1.0	0.6								CSB-50 19080	CSB-50 190100	
200 _{-0.046}	205 ^{+0.046}	205 ^{+0.210} _{+0.130}	200.070 200.216	2.465	1.8	0.6						CSB-50 20060		CSB-50 20080	CSB-50 200100	
220 _{-0.046}	225 ^{+0.046}	225 ^{+0.210} _{+0.130}	220.070 220.216	2.415										CSB-50 22080	CSB-50 220100	
250 _{-0.046}	255 ^{+0.052}	255 ^{+0.260} _{+0.170}	250.070 250.222											CSB-50 25080	CSB-50 250100	
260 _{-0.052}	265 ^{+0.052}	265 ^{+0.260} _{+0.170}	260.070 260.222		1.0	0.0								CSB-50 26080	CSB-50 260100	
		285 ^{+0.260} _{+0.170}		2.465	1.8	0.6								CSB-50 28080	CSB-50 280100	
300 _{-0.052}	305 ^{+0.052}	305 ^{+0.260} _{+0.170}	300.070 300.222											CSB-50 30080	CSB-50 300100	

CSB-50 Metric flange bushes

- 1			٠.		
	ı	n	ıt٠	m	n


Axle	Housing	OD	ID after	Designation	Wall	f ₁	f ₂			Dimens	sion	
AXIC	H7	tolerance	fixed	Designation	thickness	'1	'2	d ₁	d ₂	$d_3 \pm 0.5$	L±0.25	ℓ ₁ -0.2
6 -0.013	8 +0.015	6 +0.055	5.990	CSB-50F06040				6	8	12	4	
-0.028		+0.025	6.005	CSB-50F06070				0	0	12	7	
8 -0.013	10 ^{+0.015}	8 +0.055	7.990	CSB-50F08055				8	10	15	5.5	
-0.028	10	+0.025	8.055	CSB-50F08075					10		7.5	
0.016	+0.010	+0.055	9.990	CSB-50F10070							7	
10 ^{-0.016} _{-0.034}	12 ^{+0.018}	10 +0.025	10.058	CSB-50F10090				10	12	18	9	
				CSB-50F10120							12	
-0.016	±0.018	+0.065	11.990	CSB-50F12070							7	
12 ^{-0.016} _{-0.034}	14 ^{+0.018}	12 +0.065	12.058	CSB-50F12090				12	14	20	9	
				CSB-50F12120	+0.005	0.6	0.3				12	1
14 ^{-0.016} _{-0.034}	16 ^{+0.018}	14 ^{+0.065} _{+0.030}	13.990	CSB-50F14120	-0.020	0.0	0.0	14	16	22	12	·
-0.034		+0.030	14.058	CSB-50F14170							17	
0.016	10.040	+0.065	14.000	CSB-50F15090							9	
15 ^{-0.016} _{-0.034}	17 ^{+0.018}	15 ^{+0.065} _{+0.030}	14.990 15.058	CSB-50F15120				15	17	23	12	
				CSB-50F15170							17	
16 ^{-0.016} _{-0.034}	18 ^{+0.018}	16 ^{+0.065} _{+0.030}	15.990	CSB-50F16120				16	18	24	12	
-0.034		+0.030	16.058	CSB-50F16170							17	
-0.016	+0.021	+0.065	17.990	CSB-50F18120							12	
18 ^{-0.016} _{-0.034}	20 +0.021	18 +0.065	18.061	CSB-50F18170				18	20	26	17	
				CSB-50F18200							20	
-0.020	+0.021	+0.075	19.990	CSB-50F20115							11.5	
20 -0.020	23 ^{+0.021}	20 +0.075 +0.035	20.071	CSB-50F20165				20	23	30	16.5	
				CSB-50F20215							21.5	
22 -0.020	25 ^{+0.021}	22 +0.075 +0.035	21.990	CSB-50F22150	+0.005	0.6	0.4	22	25	32	15	1.5
-0.041		+0.035	22.071	CSB-50F22200	-0.025						20	
-0.020	28 ^{+0.021}	+0.075	24.990	CSB-50F25115				0.5		0.5	11.5	
25 ^{-0.020} _{-0.041}	28	25 ^{+0.075} _{+0.035}	25.071	CSB-50F25165				25	28	35	16.5	
				CSB-50F25215							21.5	
30 -0.025	34 +0.025	30 ^{+0.075} _{+0.035}	29.990	CSB-50F30160				30	34	42	16	
			30.085	CSB-50F30260							26	
35 ^{-0.025} _{-0.050}	39 ^{+0.025}	35 ^{+0.085} _{+0.045}	34.990	CSB-50F35160	+0.005	1.2	0.4	35	39	47	16	2
			35.085	CSB-50F35260	-0.030						26	
40 -0.025	44 +0.025	40 +0.085 +0.045	39.990	CSB-50F40260				40	44	53	26	
-0.050		+0.045	40.085	CSB-50F40400							40	




CSB-50 Metric thrust washer and strip

Metric thrust washer



Unit:mm

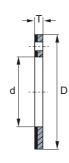
Axle	Designation		Washer o	dimension		Installati	on size	D 10.12
Axie	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t±0.2	D₁+0.12
8	CSB-50WC10	10 20			15	1.5		20
10	CSB-50WC12	12	24		18	1.5		24
12	CSB-50WC14	14	26		20			26
14	CSB-50WC16	16	30		23	2		30
16	CSB-50WC18	18	32		25			32
18	CSB-50WC20	20	36		28		1	36
20	CSB-50WC22	22	38	1.5	30	3	!	38
22	CSB-50WC24	24	42	12		3		42
24	CSB-50WC26	26	44		35			44
26	CSB-50WC28	28	48		38			48
30	CSB-50WC32	32	54		43			54
36	CSB-50WC38	38	62		50			62
40	CSB-50WC42	42	66		54	4		66
46	CSB-50WC48	48	74		61			74
50	CSB-50WC52	52	78	2	65		1.5	78
60	CSB-50WC62	62	90		76			90

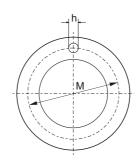
Metric standard strip

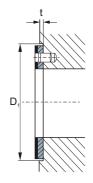
Unit:mm

Туре	Length±1	Width±1	Thickness -0.05
CSB-50SP	500	150	1.0
CSB-50SP	500	150	1.5
CSB-50SP	500	150	2.0
CSB-50SP	500	150	2.5

CSB-LA10 Metric cylindrical bushes


																nit:mm
	Housing	OD	ID after	Wall thick-	r	£					L -0	.40				
Axle	H7	tolerance	fixed	ness	f ₁	f ₂	20	25	30	40	50	60	70	80	100	115
45 ^{-0.025} _{-0.050}	50 +0.025	50 ^{+0.085} _{+0.045}	44.990 45.105				CSB-LA10 4520	CSB-LA10 4525	CSB-LA10 4530	CSB-LA10 4540	CSB-LA10 4550					
50 ^{-0.025} _{-0.050}	55		49.990 50.110				CSB-LA10 5020		CSB-LA10 5030	CSB-LA10 5040	CSB-LA10 5050	CSB-LA10 5060				
55 ^{-0.030} _{-0.060}	60 +0.030		54.990 55.110						CSB-LA10 5530	CSB-LA10 5540	CSB-LA10 5550	CSB-LA10 5560				
60 ^{-0.030} _{-0.060}	65 +0.030	65 ^{+0.100} _{+0.055}	59.990 60.110	2.460 2.505		0.6			CSB-LA10 6030	CSB-LA10 6040	CSB-LA10 6050	CSB-LA10 6060	CSB-LA10 6070			
65 ^{-0.030} _{-0.060}	70 +0.030								CSB-LA10 6530	CSB-LA10 6540	CSB-LA10 6550	CSB-LA10 6560	CSB-LA10 6570			
		75 ^{+0.100} _{+0.055}	69.990 70.110							CSB-LA10 7040	CSB-LA10 7050	CSB-LA10 7060	CSB-LA10 7070	CSB-LA10 7080		
75 ^{-0.030} _{-0.060}	80 +0.030		74.990 75.110						CSB-LA10 7530	CSB-LA10 7540	CSB-LA10 7550	CSB-LA10 7560	CSB-LA10 7570	CSB-LA10 7580		
80 -0.030	+0.035	85 ^{+0.120} _{+0.070}	80.020 80.155							CSB-LA10 8040	CSB-LA10 8050	CSB-LA10 8060	CSB-LA10 8070	CSB-LA10 8080	CSB-LA10 80100	
85 -0.035	90 +0.035	90 +0.120 +0.070	85.020 85.155							CSB-LA10 8540		CSB-LA10 8560		CSB-LA10 8580	CSB-LA10 85100	
90 -0.035	95 +0.035	95 ^{+0.120} _{+0.070}	90.020 90.155							CSB-LA10 9040	CSB-LA10 9050	CSB-LA10 9060		CSB-LA10 9080	CSB-LA10 90100	
95 -0.035	100+0.035	100+0.120	95.020 95.155	2.440 2.490	1.8	0.6					CSB-LA10 9550	CSB-LA10 9560		CSB-LA10 9580	CSB-LA10 95100	
100 _{-0.035}	105 ^{+0.035}	105+0.120	100.020 100.155								CSB-LA10 10050	CSB-LA10 10060		CSB-LA10 10080		CSB-LA10 100115
		110 ^{+0.120} _{+0.070}										CSB-LA10 10560		CSB-LA10 10580		CSB-LA10 105115
110 -0.035	115 ^{+0.035}	115 ^{+0.120} _{+0.070}	110.020 110.155									CSB-LA10 11060		CSB-LA10 11080		CSB-LA10 110115
120 _{-0.035}	125 ^{+0.040}	125+0.170	120.070 120.210									CSB-LA10 12060		CSB-LA10 12080	CSB-LA10 120100	
125 _{-0.040}	130 ^{+0.040}	130+0.170	125.070 125.210									CSB-LA10 12560			CSB-LA10 125100	CSB-LA10 125115
		135+0.170		2.415	4.0	0.0						CSB-LA10 13060		CSB-LA10 13080	CSB-LA10 130100	
		145+0.170		2.465	1.8	0.6						CSB-LA10 14060		CSB-LA10 14080	CSB-LA10 140100	
150 _{-0.040}	155 ^{+0.040}	155 ^{+0.170} _{+0.100}	150.070 150.210									CSB-LA10 15060		CSB-LA10 15080	CSB-LA10 150100	
		165 ^{+0.170} _{+0.100}										CSB-LA10 16060		CSB-LA10 16080	CSB-LA10 160100	CSB-LA10 160115
180 _{-0.040}	185 ^{+0.046}	185 ^{+0.210} _{+0.130}	180.070 180.216											CSB-LA10 18080	CSB-LA10 180100	
		195 ^{+0.210} _{+0.130}		2.415	4.0	0.0								CSB-LA10 19080	CSB-LA10 190100	
200 _{-0.046}	205 ^{+0.046}	205+0.210	200.070 200.216	2.465	1.8	0.6						CSB-LA10 20060		CSB-LA10 20080	CSB-LA10 200100	
220 _{-0.046}	225 ^{+0.046}	225 ^{+0.210} _{+0.130}	220.070 220.216											CSB-LA10 22080	CSB-LA10 220100	
250 _{-0.046}	255 ^{+0.052}	255 ^{+0.260} _{+0.170}	250.070 250.222											CSB-LA10 25080	CSB-LA10 250100	
		265 ^{+0.260} _{+0.170}		2.415		0.0								CSB-LA10 26080	CSB-LA10 260100	
		285 ^{+0.260} _{+0.170}		2.465		0.6								CSB-LA10 28080	CSB-LA10 280100	
		305 ^{+0.260} _{+0.170}												CSB-LA10 30080	CSB-LA10 300100	




CSB-50 Metric thrust washer and strip

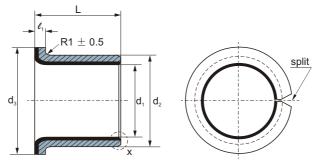
Metric thrust washer



Unit:mm

Axle	Designation		Washer o	dimension		Installati	on size	D 10.12
Axie	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t±0.2	D₁+0.12
8	CSB-50WC10	10 20			15	1.5		20
10	CSB-50WC12	12	24		18	1.5		24
12	CSB-50WC14	14	26		20			26
14	CSB-50WC16	16	30		23	2		30
16	CSB-50WC18	18	32		25			32
18	CSB-50WC20	20	36		28		1	36
20	CSB-50WC22	22	38	1.5	30	3	!	38
22	CSB-50WC24	24	42	12		3		42
24	CSB-50WC26	26	44		35			44
26	CSB-50WC28	28	48		38			48
30	CSB-50WC32	32	54		43			54
36	CSB-50WC38	38	62		50			62
40	CSB-50WC42	42	66		54	4		66
46	CSB-50WC48	48	74		61			74
50	CSB-50WC52	52	78	2	65		1.5	78
60	CSB-50WC62	62	90		76			90

Metric standard strip

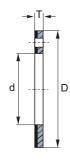


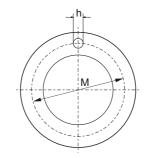
Unit:mm

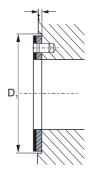
Туре	Length±1	Width±1	Thickness -0.05
CSB-50SP	500	150	1.0
CSB-50SP	500	150	1.5
CSB-50SP	500	150	2.0
CSB-50SP	500	150	2.5

CSB-LA10 Metric flange bushes

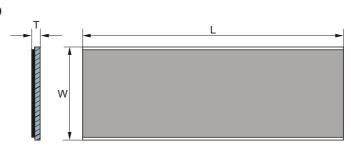
$\frac{35^{\circ} \pm 5^{\circ}}{20^{\circ} \pm 5^{\circ}} \min 0.3$ Detail X
Unit:mm
imension


Axle	Housing	OD	ID after	Designation	Wall	f ₁	f ₂			Dimens	sion			
AXIC	H7	tolerance	fixed	Doorgridation	thickness	"1	' 2	d₁	d ₂	$d_3 \pm 0.5$	L±0.25	<i>ℓ</i> ₁ -0.2		
6 -0.013	8 +0.015	6 +0.055	5.990	CSB-LA10F06040				6	8	12	4			
-0.028		+0.025	6.005	CSB-LA10F06070					0	12	7			
8 -0.013	10 +0.015	8 +0.055	7.990	CSB-LA10F08055				8	10	15	5.5			
-0.028	10	+0.025	8.055	CSB-LA10F08075					10	10	7.5			
0.016	±0.018	+0.055	9.990	CSB-LA10F10070							7			
10 ^{-0.016}	12 +0.018	10 +0.055	10.058	CSB-LA10F10090				10	12	18	9			
				CSB-LA10F10120							12			
-0.016	+0.018	8 12 +0.065 +0.030	+0.065	+0.065	11.990	CSB-LA10F12070							7	
12 ^{-0.016} _{-0.034}	14 +0.018		12.058	CSB-LA10F12090			0.3	12	14	20	9			
				CSB-LA10F12120	+0.005	0.6					12	1		
14 ^{-0.016}	16 ^{+0.018}	14 ^{+0.065} _{+0.030}	13.990	CSB-LA10F14120	-0.020	0.0	0.0	14	16	22	12			
-0.034		+0.030	14.058	CSB-LA10F14170							17			
0.016	10.010	+0.065	14.000	CSB-LA10F15090							9			
15 ^{-0.016} _{-0.034}	17 +0.018	15 +0.065 +0.030	14.990 15.058	CSB-LA10F15120				15	17	23	12			
				CSB-LA10F15170							17			
16 ^{-0.016}	18 +0.018	16 ^{+0.065} _{+0.030}	15.990	CSB-LA10F16120				16	18	24	12			
-0.034		+0.030	16.058	CSB-LA10F16170							17			
-0.016	+0.021	+0.065	17.990	CSB-LA10F18120				18			12			
18 ^{-0.016}	20 +0.021	18 ^{+0.065} _{+0.030}	18.061	CSB-LA10F18170					20	26	17			
				CSB-LA10F18200							20			
-0.020	+0.021	+0.075	19.990	CSB-LA10F20115							11.5			
20 ^{-0.020} _{-0.041}	23 +0.021	20 +0.035	20.071	CSB-LA10F20165				20	23	30	16.5			
				CSB-LA10F20215							21.5			
22 ^{-0.020} _{-0.041}	25 +0.021	22 +0.075 +0.035	21.990	CSB-LA10F22150	+0.005	0.6	0.4	22	25	32	15	1.5		
-0.041		+0.035	22.071	CSB-LA10F22200	-0.025						20			
-0.020	28 +0.021	+0.075	24.990	CSB-LA10F25115				0.5		0.5	11.5			
25 ^{-0.020} _{-0.041}	28	25 ^{+0.075} _{+0.035}	25.071	CSB-LA10F25165				25	28	35	16.5			
				CSB-LA10F25215							21.5			
30 -0.025	34 +0.025	30 ^{+0.075} _{+0.035}	29.990	CSB-LA10F30160				30	34	42	16			
			30.085	CSB-LA10F30260							26			
35 ^{-0.025} _{-0.050}	39 ^{+0.025}	35 ^{+0.085} _{+0.045}	34.990	CSB-LA10F35160	+0.005	1.2	2 0.4	.4 35 39	39	47	16	2		
			35.085	CSB-LA10F35260	-0.030	1.2 0					26			
40 -0.025	44 +0.025	14 ^{+0.025} 40 ^{+0.085} 39.990 CSB-LA1 40.085 CSB-LA1	CSB-LA10F40260				40	44	44 53	26				
-0.030		+0.045	40.085	CSB-LA10F40400							40			




CSB-LA10 Metric thrust washer and strip

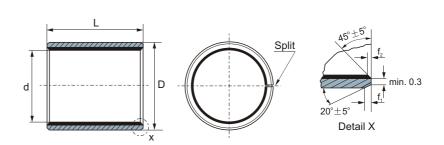
Metric thrust washer



Unit:mm

								O m c.m.
Axle	Designation		Washer o	dimension		Installati	on size	D 10 10
Axie	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t±0.2	D₁+0.12
8	CSB-LA10WC10	10	20		15	1.5		20
10	CSB-LA10WC12	12	24		18	1.5		24
12	CSB-LA10WC14	14	26		20			26
14	CSB-LA10WC16	16	30		23	2		30
16	CSB-LA10WC18	18	32		25			32
18	CSB-LA10WC20	20	36		28		1	36
20	CSB-LA10WC22	22	38	1.5	30	3	ı	38
22	CSB-LA10WC24	24	42		33	3		42
24	CSB-LA10WC26	26	44		35			44
26	CSB-LA10WC28	28	48		38			48
30	CSB-LA10WC32	32	54		43			54
36	CSB-LA10WC38	38	62		50			62
40	CSB-LA10WC42	42	66		54	4		66
46	CSB-LA10WC48	48	74		61			74
50	CSB-LA10WC52	52	78	2	65		1.5	78
60	CSB-LA10WC62	62	90		76			90

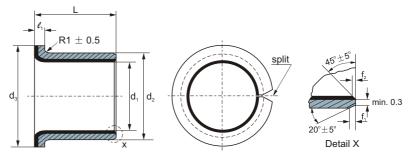
Metric standard strip



Туре	Length±1	Width±1	Thickness -0.05
CSB-LA10SP	500	150	1.0
CSB-LA10SP	500	150	1.5
CSB-LA10SP	500	150	2.0
CSB-LA10SP	500	150	2.5

CSB-11 Metric cylindrical bushes

											0	11-20	20 1 0 2	`		0	10.111111																													
Axle	Housing		ID after	Wall thick-	f ₁	f ₂					L _{-0.40}		30 L -0.3 30 L -0.4																																	
	H7	tolerance	fixed	ness			6	8	10	12	15	20	25	30	40	50	60																													
6 -0.013 -0.028	8 +0.015	8 ^{+0.075} +0.045	5.990 6.055				CSB-11 0606	CSB-11 0608	CSB-11 0610																																					
8 ^{-0.013} -0.028	10 +0.015	10 +0.075 +0.045	7.990 8.055				CSB-11 0806	CSB-11 0808	CSB-11 0810	CSB-11 0812	CSB-11 0815																																			
10 ^{-0.016} _{-0.034}	12 +0.018	12 ^{+0.080} _{+0.050}	9.990 10.058				CSB-11 1006	CSB-11 1008	CSB-11 1010	CSB-11 1012	CSB-11 1015	CSB-11 1020																																		
12 ^{-0.016} _{-0.034}	14 +0.018	14 ^{+0.080} _{+0.050}	11.990 12.058				CSB-11 1206	CSB-11 1208	CSB-11 1210	CSB-11 1212	CSB-11 1215	CSB-11 1220	CSB-11 1225																																	
13 -0.016 -0.034	15 +0.018	15 ^{+.0.080} _{+0.050}	12.990 13.058	0.980	0.0				CSB-11 1310			CSB-11 1320																																		
14 ^{-0.016} _{-0.034}	16 +0.018	16 ^{+0.080} _{+0.050}	13.990 14.058	1.005	0.6	0.3			CSB-11 1410	CSB-11 1412	CSB-11 1415	CSB-11 1420	CSB-11 1425																																	
15 ^{-0.016} _{-0.034}	17 +0.018	17 ^{+0.080} _{+0.050}	14.990 15.058						CSB-11 1510	CSB-11 1512	CSB-11 1515	CSB-11 1520	CSB-11 1525																																	
16 ^{-0.016} _{-0.034}	18 +0.018	18 ^{+0.080} _{+0.050}	15.990 16.058						CSB-11 1610	CSB-11 1612	CSB-11 1615	CSB-11 1620	CSB-11 1625																																	
17 ^{-0.016} _{-0.034}	19 +0.021	19 ^{+0.095} _{+0.055}	16.990 17.061						CSB-11 1710	CSB-11 1712		CSB-11 1720																																		
18 ^{-0.016} _{-0.034}	20 +0.021	20 +0.095 +0.055	17.990 18.061						CSB-11 1810	CSB-11 1812	CSB-11 1815	CSB-11 1820	CSB-11 1825																																	
20 -0.020 -0.041	23 +0.021	23 +0.095 +0.055	19.990 20.071						CSB-11 2010	CSB-11 2012	CSB-11 2015	CSB-11 2020	CSB-11 2025	CSB-11 2030																																
22 ^{-0.020} _{-0.041}	25 +0.021	25 ^{+0.095} _{+0.055}	21.990 22.071	1.475	0.0	0.4			CSB-11 2210	CSB-11 2212	CSB-11 2215	CSB-11 2220	CSB-11 2225	CSB-11 2230																																
24 ^{-0.020} _{-0.041}	27 +0.021	27 ^{+0.095} _{+0.055}	23.990 24.071	1.505	0.6	0.4					CSB-11 2415	CSB-11 2420	CSB-11 2425	CSB-11 2430																																
25 ^{-0.020} _{-0.041}	28 +0.021	28 ^{+0.095} +0.055	24.990 25.071						CSB-11 2510	CSB-11 2512	CSB-11 2515	CSB-11 2520	CSB-11 2525	CSB-11 2530	CSB-11 2540	CSB-11 2550																														
28 -0.020 -0.041	32 +0.025	32 ^{+0.110} _{+0.065}	27.990 28.085								CSB-11 2815	CSB-11 2820	CSB-11 2825	CSB-11 2830	CSB-11 2840																															
30 -0.020 -0.041	34 +0.025	34 ^{+0.110} _{+0.065}	29.990 30.285							CSB-11 3012	CSB-11 3015	CSB-11 3020	CSB-11 3025	CSB-11 3030	CSB-11 3040																															
32 ^{-0.025} _{-0.050}	36 ^{+0.025}	36 ^{+0.110} _{+0.065}	31.990 32.085	1.970	1.2	0.4						CSB-11 3220		CSB-11 3230	CSB-11 3240																															
35 ^{-0.025} _{-0.050}	39 +0.025	39 ^{+0.110} _{+0.065}	34.990 35.085	2.005		0.4				CSB-11 3512	CSB-11 3515	CSB-11 3520	CSB-11 3525	CSB-11 3530	CSB-11 3540	CSB-11 3550																														
38 -0.025	42 +0.025	42 ^{+0.110} _{+0.065}	37.990 38.085																																						CSB-11 3815			CSB-11 3830	CSB-11 3840	
40 -0.025	44 +0.025	44 ^{+0.110} _{+0.065}	39.990 40.085							CSB-11 4012		CSB-11 4020	CSB-11 4025	CSB-11 4030	CSB-11 4040	CSB-11 4050																														

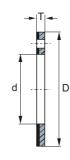


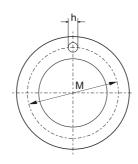
CSB-11 Metric cylindrical bushes

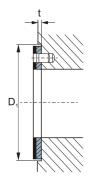
												0 0.40				nit:mm
Axle	Housing H7	OD tolerance	ID after fixed	Wall thick-	f,	f ₂					L .	0.40				
				ness			20	25	30	40	50	60	70	80	100	115
		50 +0.110 +0.065	44.990 45.105				CSB-11 4520	CSB-11 4525	CSB-11 4530	CSB-11 4540	CSB-11 4550					
50 ^{-0.025} _{-0.050}			49.990 50.110				CSB-11 5020		CSB-11 5030	CSB-11 5040	CSB-11 5050	CSB-11 5060				
55 ^{-0.030} _{-0.060}	60 +0.030	60 ^{+0.125} _{+0.075}							CSB-11 5530	CSB-11 5540	CSB-11 5550	CSB-11 5560				
60 ^{-0.030} _{-0.060}	65 ^{+0.030}	65 ^{+0.125} _{+0.075}	59.990 60.110	2.460 2.505		0.6			CSB-11 6030	CSB-11 6040	CSB-11 6050	CSB-11 6060	CSB-11 6070			
65 ^{-0.030} _{-0.060}	70 +0.030	70 ^{+0.125} _{+0.075}	64.990 65.110						CSB-11 6530	CSB-11 6540	CSB-11 6550	CSB-11 6560	CSB-11 6570			
70 -0.030	75 ^{+0.030}	75 ^{+0.125} _{+0.075}	69.990 70.110							CSB-11 7040	CSB-11 7050	CSB-11 7060	CSB-11 7070	CSB-11 7080		
75 ^{-0.030} _{-0.060}	80		74.990 75.110						CSB-11 7530	CSB-11 7540	CSB-11 7550	CSB-11 7560	CSB-11 7570	CSB-11 7580		
80 -0.030	±0.035	85 ^{+0.140} _{+0.090}	80.020 80.155							CSB-11 8040	CSB-11 8050	CSB-11 8060	CSB-11 8070	CSB-11 8080	CSB-11 80100	
		90 +0.140 +0.090	85.020 85.155							CSB-11 8540		CSB-11 8560		CSB-11 8580	CSB-11 85100	
90 -0.035	95 ^{+0.035}	95 +0.140 +0.090	90.020 90.155							CSB-11 9040	CSB-11 9050	CSB-11 9060		CSB-11 9080	CSB-11 90100	
		100+0.140		2.440 2.490	1.8	0.6					CSB-11 9550	CSB-11 9560		CSB-11 9580	CSB-11 95100	
100_0.035	105 ^{+0.035}	105+0.140	100.020 100.155								CSB-11 10050	CSB-11 10060		CSB-11 10080		CSB-11 100115
		110 ^{+0.140} _{+0.090}										CSB-11 10560		CSB-11 10580		CSB-11 105115
		115 ^{+0.140} _{+0.090}										CSB-11 11060		CSB-11 11080		CSB-11 110115
		125+0.190										CSB-11 12060		CSB-11 12080	CSB-11 120100	
125_0.040	130 ^{+0.040}	130+0.190	125.070 125.210									CSB-11 12560			CSB-11 125100	CSB-11 125115
130_0.040	135 ^{+0.040}	135 ^{+0.190} _{+0.120}	130.070 130.210	2.415								CSB-11 13060		CSB-11 13080	CSB-11 130100	
140_0.040	145 ^{+0.040}	145 ^{+0.190} _{+0.120}		2.465		0.6						CSB-11 14060		CSB-11 14080	CSB-11 140100	
150_0.040	155 ^{+0.040}	155 ^{+0.190} _{+0.120}	150.070 150.210									CSB-11 15060		CSB-11 15080	CSB-11 150100	
160_0.040	165 ^{+0.040}	165 ^{+0.190} _{+0.120}	160.070 160.210									CSB-11 16060		CSB-11 16080	CSB-11 160100	CSB-11 160115
180_0.040	185 ^{+0.046}	185 ^{+0.230} _{+0.150}	180.070 180.216											CSB-11 18080		
		195 ^{+0.230} _{+0.150}		2.415	4.0									CSB-11 19080	CSB-11 190100	
		205 ^{+0.230} _{+0.150}		2.465		0.6						CSB-11 20060		CSB-11 20080	CSB-11 200100	
220_0.046	225 ^{+0.046}	225 ^{+0.230} _{+0.150}	220.070 220.216		15 4 9 7									CSB-11 22080	CSB-11 220100	
250_0.046	255 ^{+0.052}	255 ^{+0.280} _{+0.190}	250.070 250.222											CSB-11 25080	CSB-11 250100	
260_0.052	265 ^{+0.052}	265 ^{+0.280} _{+0.190}	260.070 260.222	2.415										CSB-11 26080	CSB-11 260100	
		285 ^{+0.280} _{+0.190}		2.465	1.8	0.6								CSB-11 28080	CSB-11 280100	
300_0.052	305 ^{+0.052}	305 ^{+0.280} _{+0.190}												CSB-11 30080	CSB-11 300100	

CSB-11 Metric flange bushes

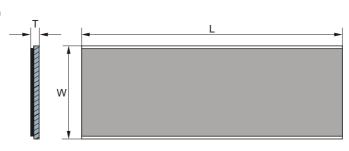
 1.1	
 nit:m	r
 '	


	Housing	OD	ID after	Designation	Wall	f ₁	f ₂			Dimens	sion	
Axle	H7	tolerance	fixed	Designation	thickness	'1	' 2	d₁	d ₂	$d_3 \pm 0.5$	L±0.25	ℓ ₁ -0.2
6 -0.013	8 +0.015	6 +0.075	5.990	CSB-11F06040				6	8	12	4	
-0.028		+0.045	6.005	CSB-11F06070					0	12	7	
8 -0.013	10 ^{+0.015}	8 +0.075	7.990	CSB-11F08055				8	10	15	5.5	
-0.028	10	+0.045	8.055	CSB-11F08075							7.5	
-0.016	12 +0.018	+0.075	9.990	CSB-11F10070							7	
10 ^{-0.016} _{-0.034}	12	10 +0.075 +0.045	10.058	CSB-11F10090				10	12	18	9	
				CSB-11F10120							12	
0.016	14 ^{+0.018}	+0.080	11.990	CSB-11F12070							7	
12 ^{-0.016} _{-0.034}	14	12 +0.080 +0.050	12.058	CSB-11F12090				12	14	20	9	
				CSB-11F12120	+0.005	0.6	0.3				12	1
14 ^{-0.016} _{-0.034}	16 ^{+0.018}	14 ^{+0.080} _{+0.050}	13.990	CSB-11F14120	-0.020			14	16	22	12	
-0.054		10.030	14.058	CSB-11F14170							17	
0.016	17 ^{+0.018}	4E +0.080	14.990	CSB-11F15090				15	17	23	12	
15 ^{-0.016} _{-0.034}	17	15 +0.080	15.058	CSB-11F15120 CSB-11F15170				15	17	23	17	
0.046	.0.040	10.000	45.000	CSB-11F15170							12	
16 ^{-0.016} _{-0.034}	18 ^{+0.018}	16 ^{+0.080} _{+0.050}	15.990 16.058	CSB-11F16170				16	18	24	17	
				CSB-11F18120							12	
18 ^{-0.016} _{-0.034}	20 +0.021	18 +0.080	17.990	CSB-11F18170				18	20	26	17	
-0.034	20	18 +0.050	18.061	CSB-11F18200				10	20	20	20	
				CSB-11F20115							11.5	
20 -0.020	23 ^{+0.021}	20 +0.095 +0.055	19.990	CSB-11F20165				20	23	30	16.5	
-0.041		+0.055	20.071	CSB-11F20215							21.5	
-0.020	25 ^{+0.021}	+0.095	21.990	CSB-11F22150	+0.005	0.0			0.5		15	
22 ^{-0.020} _{-0.041}	25	22 +0.095 +0.055	22.071	CSB-11F22200	-0.025	0.6	0.4	22	25	32	20	1.5
				CSB-11F25115							11.5	
25 ^{-0.020} _{-0.041}	28 ^{+0.021}	25 ^{+0.095} _{+0.055}	24.990 25.071	CSB-11F25165				25	28	35	16.5	
			25.071	CSB-11F25215							21.5	
30 -0.025	34 +0.025	30 ^{+0.095} _{+0.055}	29.990	CSB-11F30160				30	34	42	16	
-0.050	34	30+0.055	30.085	CSB-11F30260				30	34	42	26	
35 ^{-0.025} _{-0.050}	39+0.025	35 ^{+0.110} _{+0.065}	34.990	CSB-11F35160	+0.005	1.2	0.4	35	39	47	16	2
-0.050		+0.065	35.085	CSB-11F35260	-0.030	1.2	0.4	30	39	41	26	
40 -0.025	44 +0.025	40 +0.110 +0.065	39.990	CSB-11F40260				40	44	53	26	
-0.050	+4	+0.065	40.085	CSB-11F40400				70	77	33	40	




CSB-11 Metric thrust washer and strip

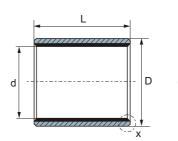
Metric thrust washer

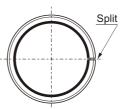


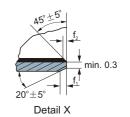
Unit:mm

Axle	Designation		Washer o	dimension		Installati	on size	D₁+0.12
Axie	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4} +0.1	t±0.2	D ₁ +0.12
8	CSB-11WC10	10	20		15	1.5		20
10	CSB-11WC12	12	24		18	1.5		24
12	CSB-11WC14	14	26		20			26
14	CSB-11WC16	16	30		23	2		30
16	CSB-11WC18	18	32		25			32
18	CSB-11WC20	20	36	4.5	28		1	36
20	CSB-11WC22	22	38	1.5	30	3		38
22	CSB-11WC24	24	42		33	3		42
24	CSB-11WC26	26	44		35			44
26	CSB-11WC28	28	48		38			48
30	CSB-11WC32	32	54		43			54
36	CSB-11WC38	38	62		50			62
40	CSB-11WC42	42	66		54	4		66
46	CSB-11WC48	48	74		61			74
50	CSB-11WC52	52	78	2	65		1.5	78
60	CSB-11WC62	62	90		76			90

Metric standard strip

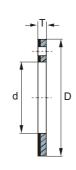


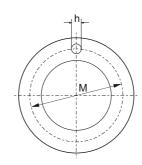

Unit:mm

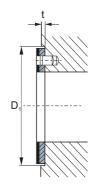

Туре	Length±1	Width±1	Thickness -0.05
CSB-11SP	500	150	1.0
CSB-11SP	500	150	1.5
CSB-11SP	500	150	2.0
CSB-11SP	500	150	2.5

CSB-30 Metric cylinrical bushes

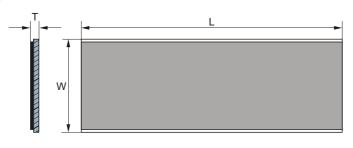
Axle	Housing	OD	ID after	Wall thick-	f,	f ₂					L _{-0.40}	(d≤ φ3 d> φ3	30 L-0.3 30 L-0.4)				
AXIC	H7	tolerance	fixed	ness	'1	'2	6	8	10	12	15	20	25	30	40	50	60	
6 -0.013	8 +0.015	8 +0.055 +0.025	5.990 6.055				CSB-30 0606	CSB-30 0608	CSB-30 0610									
8 -0.013	10 +0.015	10 +0.055 +0.025	7.990 8.055				CSB-30 0806	CSB-30 0808	CSB-30 0810	CSB-30 0812	CSB-30 0815							
10 -0.016	12 +0.018	12 ^{+0.065} _{+0.030}	9.990 10.058				CSB-30 1006	CSB-30 1008	CSB-30 1010	CSB-30 1012	CSB-30 1015	CSB-30 1020						
12 ^{-0.016} _{-0.034}	14 +0.018	14 +0.065 +0.030	11.990 12.058				CSB-30 1206	CSB-30 1208	CSB-30 1210	CSB-30 1212	CSB-30 1215	CSB-30 1220	CSB-30 1225					
13 ^{-0.016} _{-0.034}	15 +0.018	15 ^{+.0.065} _{+0.030}	12.990 13.058	0.980					CSB-30 1310			CSB-30 1320						
14 ^{-0.016} _{-0.034}	16 +0.018	16 ^{+0.065} _{+0.030}	13.990 14.058	1.005	0.6	0.3			CSB-30 1410	CSB-30 1412	CSB-30 1415	CSB-30 1420	CSB-30 1425					
15 ^{-0.016} _{-0.034}	17 +0.018	17 ^{+0.065} _{+0.030}	14.990 15.058						CSB-30 1510	CSB-30 1512	CSB-30 1515	CSB-30 1520	CSB-30 1525					
16 ^{-0.016} _{-0.034}	18 +0.018	18 ^{+0.065} _{+0.030}	15.990 16.058						CSB-30 1610	CSB-30 1612	CSB-30 1615	CSB-30 1620	CSB-30 1625					
17 ^{-0.016} _{-0.034}	19 +0.021	19 ^{+0.075} _{+0.035}	16.990 17.061						CSB-30 1710	CSB-30 1712		CSB-30 1720						
18 ^{-0.016} _{-0.034}	20 +0.021	20 +0.075 +0.035	17.990 18.061						CSB-30 1810	CSB-30 1812	CSB-30 1815	CSB-30 1820	CSB-30 1825					
20 -0.020 -0.041	23 +0.021	23 -0.075 +0.035	19.990 20.071						CSB-30 2010	CSB-30 2012	CSB-30 2015	CSB-30 2020	CSB-30 2025	CSB-30 2030				
22 -0.020	25 +0.021	25 ^{+0.075} _{+0.035}	21.990 22.071	1.475					CSB-30 2210	CSB-30 2212	CSB-30 2215	CSB-30 2220	CSB-30 2225	CSB-30 2230				
24 ^{-0.020} _{-0.041}	27 +0.021	27 ^{+0.075} _{+0.035}	23.990 24.071	1.505	0.6	0.4	0.4					CSB-30 2415	CSB-30 2420	CSB-30 2425	CSB-30 2430			
25 ^{-0.020} _{-0.041}	28 +0.021	28 ^{+0.075} _{+0.035}	24.990 25.071						CSB-30 2510	CSB-30 2512	CSB-30 2515	CSB-30 2520	CSB-30 2525	CSB-30 2530	CSB-30 2540	CSB-30 2550		
28 -0.020 -0.041	32 +0.025	32 ^{+0.085} _{+0.045}	27.990 28.085								CSB-30 2815	CSB-30 2820	CSB-30 2825	CSB-30 2830	CSB-30 2840			
30 -0.020	34 +0.025	34 ^{+0.085} _{+0.045}	29.990 30.285							CSB-30 3012	CSB-30 3015	CSB-30 3020	CSB-30 3025	CSB-30 3030	CSB-30 3040			
32 ^{-0.025} _{-0.050}	36 +0.025	36 ^{+0.085} _{+0.045}	31.990 32.085	1.970 2.005							CSB-30 3220		CSB-30 3230	CSB-30 3240				
35 ^{-0.025} _{-0.050}	39 +0.025	39 ^{+0.085} _{+0.045}	34.990 35.085		0.4				CSB-30 3512	CSB-30 3515	CSB-30 3520	CSB-30 3525	CSB-30 3530	CSB-30 3540	CSB-30 3550			
38 -0.025 -0.050	42 +0.025	42 ^{+0.085} _{+0.045}	37.990 38.085							CSB-30 3815			CSB-30 3830	CSB-30 3840				
40 -0.025 -0.050	44 +0.025	44 ^{+0.085} _{+0.045}	39.990 40.085							CSB-30 4012		CSB-30 4020	CSB-30 4025	CSB-30 4030	CSB-30 4040	CSB-30 4050		


CSB-30 Metric cylindrical bushes


															U	nit:mm
Axle	Housing	OD	ID after	Wall thick-	f ₁	f ₂					L.	0 0.40				
Axie	H7	tolerance	fixed	ness	¹ 1	12	20	25	30	40	50	60	70	80	100	115
45 -0.025 -0.050	50 +0.025	50 ^{+0.085} _{+0.045}	44.990 45.105				CSB-30 4520	CSB-30 4525	CSB-30 4530	CSB-30 4540	CSB-30 4550					
-0.030	55						CSB-30 5020		CSB-30 5030	CSB-30 5040	CSB-30 5050	CSB-30 5060				
		60 +0.100 +0.055		0.400					CSB-30 5530	CSB-30 5540	CSB-30 5550	CSB-30 5560				
0.000	65 +0.030			2.460 2.505	1.8	0.6			CSB-30 6030	CSB-30 6040	CSB-30 6050	CSB-30 6060	CSB-30 6070			
		70 +0.100 +0.055	64.990 65.110						CSB-30 6530	CSB-30 6540	CSB-30 6550	CSB-30 6560	CSB-30 6570			
70 -0.030 -0.060	75 +0.030	. 0.000								CSB-30 7040	CSB-30 7050	CSB-30 7060	CSB-30 7070	CSB-30 7080		
		80 +0.100 +0.055							CSB-30 7530	CSB-30 7540	CSB-30 7550	CSB-30 7560	CSB-30 7570	CSB-30 7580		
80 -0.030		85 ^{+0.120} _{+0.070}								CSB-30 8040	CSB-30 8050	CSB-30 8060	CSB-30 8070	CSB-30 8080	CSB-30 80100	
85 -0.035	90 +0.035	. 0.01 0								CSB-30 8540		CSB-30 8560		CSB-30 8580	CSB-30 85100	
90 -0.035		95 +0.120 +0.070		2.440						CSB-30 9040	CSB-30 9050	CSB-30 9060		CSB-30 9080	CSB-30 90100	
		100+0.120		2.440	1.8	0.6					CSB-30 9550	CSB-30 9560		CSB-30 9580	CSB-30 95100	
100_0.035											CSB-30 10050	CSB-30 10060		CSB-30 10080		CSB-30 100115
		110+0.120 +0.070										CSB-30 10560		CSB-30 10580		CSB-30 105115
110 -0.035												CSB-30 11060		CSB-30 11080		CSB-30 110115
120 _{-0.035}												CSB-30 12060		CSB-30 12080	CSB-30 120100	
		130+0.170										CSB-30 12560			CSB-30 125100	CSB-30 125115
130 _{-0.040}	135 ^{+0.040}	135 ^{+0.170} _{+0.100}	130.070 130.210	2.415		0.6						CSB-30 13060		CSB-30 13080	CSB-30 130100	
140 _{-0.040}				2.465		0.0						CSB-30 14060		CSB-30 14080	CSB-30 140100	
150 _{-0.040}												CSB-30 15060		CSB-30 15080	CSB-30 150100	
160 _{-0.040}												CSB-30 16060		CSB-30 16080	CSB-30 160100	CSB-30 160115
180 _{-0.040}														CSB-30 18080	180100	
190 _{-0.046}				2.415	1.8	0.6						067		CSB-30 19080	CSB-30 190100	
200 _{-0.046}				2.465								CSB-30 20060		CSB-30 20080	CSB-30 200100	
220 _{-0.046}														CSB-30 22080	CSB-30 220100	
250 _{-0.046}														CSB-30 25080	CSB-30 250100	
260 _{-0.052}				2.415 2.465	1.8	0.6								CSB-30 26080	CSB-30 260100	
280 _{-0.052}				2.465										CSB-30 28080	CSB-30 280100	
300 _{-0.052}	305 0.052	305+0.170	300.070 300.222											CSB-30 30080	CSB-30 300100	


CSB-30 Metric thrust washer and strip

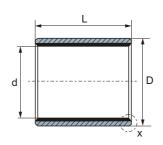
Metric thrust washer

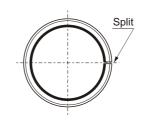


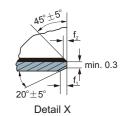
Unit:mm

Axle	Designation		Washer o	dimension		Installation	on size	D₁+0.12
Axie	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4} +0.1	t±0.2	D ₁ +0.12
8	CSB-30WC10	10	20		15	1.5		20
10	CSB-30WC12	12	24		18	1.5		24
12	CSB-30WC14	14	26		20			26
14	CSB-30WC16	16	30		23	2		30
16	CSB-30WC18	18	32		25			32
18	CSB-30WC20	20	36	4.5	28		1	36
20	CSB-30WC22	22	38	1.5	30	3	'	38
22	CSB-30WC24	24	42		33			42
24	CSB-30WC26	26	44		35			44
26	CSB-30WC28	28	48		38			48
30	CSB-30WC32	32	54		43			54
36	CSB-30WC38	38	62		50			62
40	CSB-30WC42	42	66		54	4		66
46	CSB-30WC48	48	74		61			74
50	CSB-30WC52	52	78	2	65		1.5	78
60	CSB-30WC62	62	90		76			90

Metric standard strip

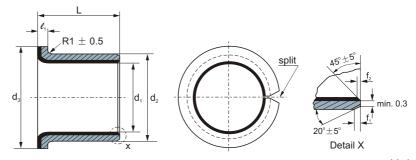

Unit:mm


Туре	Length±1	Width±1	Thickness -0.05
CSB-30SP	500	150	1.0
CSB-30SP	500	150	1.5
CSB-30SP	500	150	2.0
CSB-30SP	500	150	2.5



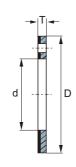
CSB-40 Metric cylindrical bushes

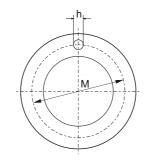
																011	it:mm					
Axle	Housing H7	OD tolerance	ID after	Wall thick-	f ₁	f ₂					L _{-0.40}	(d≤ φ3 d> φ3	30 L -0.3 30 L -0.4)								
	117	tolcrance	lixcu	ness			6	8	10	12	15	20	25	30	40	50	60					
6 -0.013 -0.028	8 +0.015	8 ^{+0.055} _{+0.025}	5.990 6.055				CSB-40 0606	CSB-40 0608	CSB-40 0610													
8 ^{-0.013} -0.028	10 +0.015	10 +0.055 +0.025	7.990 8.055				CSB-40 0806	CSB-40 0808	CSB-40 0810	CSB-40 0812	CSB-40 0815											
10 -0.016 -0.034	12 +0.018	12 ^{+0.065} _{+0.030}	9.990 10.058				CSB-40 1006	CSB-40 1008	CSB-40 1010	CSB-40 1012	CSB-40 1015	CSB-40 1020										
12 -0.016 -0.034	14 +0.018	14 ^{+0.065} _{+0.030}	11.990 12.058				CSB-40 1206	CSB-40 1208	CSB-40 1210	CSB-40 1212	CSB-40 1215	CSB-40 1220	CSB-40 1225									
13 ^{-0.016} _{-0.034}	15 +0.018	15 ^{+.0.065} _{+0.030}	12.990 13.058	0.980	0.6	0.3			CSB-40 1310			CSB-40 1320										
14 ^{-0.016} _{-0.034}	16 +0.018	16 ^{+0.065} _{+0.030}	13.990 14.058	1.005	0.0			CSB-40 1410	CSB-40 1412	CSB-40 1415	CSB-40 1420	CSB-40 1425										
15 ^{-0.016} _{-0.034}	17 +0.018		14.990 15.058						CSB-40 1510	CSB-40 1512	CSB-40 1515	CSB-40 1520	CSB-40 1525									
16 ^{-0.016} _{-0.034}	18 +0.018	18 ^{+0.065} _{+0.030}	15.990 16.058						CSB-40 1610	CSB-40 1612	CSB-40 1615	CSB-40 1620	CSB-40 1625									
17 ^{-0.016} _{-0.034}	19 +0.021	19 ^{+0.075} _{+0.035}	16.990 17.061						CSB-40 1710	CSB-40 1712		CSB-40 1720										
18 ^{-0.016} _{-0.034}	20 +0.021	20 +0.075 +0.035	17.990 18.061						CSB-40 1810	CSB-40 1812	CSB-40 1815	CSB-40 1820	CSB-40 1825									
20 -0.020 -0.041	23 +0.021	23 +0.035	19.990 20.071						CSB-40 2010	CSB-40 2012	CSB-40 2015	CSB-40 2020	CSB-40 2025	CSB-40 2030								
22 -0.020 -0.041	25 +0.021	25 ^{+0.075} _{+0.035}	21.990 22.071	1.475	0.6	0.4			CSB-40 2210	CSB-40 2212	CSB-40 2215	CSB-40 2220	CSB-40 2225	CSB-40 2230								
24 -0.020 -0.041	27 +0.021	27 ^{+0.075} _{+0.035}	23.990 24.071	1.505	0.0	0.4					CSB-40 2415	CSB-40 2420	CSB-40 2425	CSB-40 2430								
25 ^{-0.020} _{-0.041}	28 +0.021	28 ^{+0.075} _{+0.035}	24.990 25.071						CSB-40 2510	CSB-40 2512	CSB-40 2515	CSB-40 2520	CSB-40 2525	CSB-40 2530	CSB-40 2540	CSB-40 2550						
28 -0.020 -0.041	32 +0.025	32 ^{+0.085} _{+0.045}	27.990 28.085								CSB-40 2815	CSB-40 2820	CSB-40 2825	CSB-40 2830	CSB-40 2840							
30 -0.020 -0.041	34 +0.025	34 ^{+0.085} _{+0.045}	29.990 30.285							CSB-40 3012	CSB-40 3015	CSB-40 3020	CSB-40 3025	CSB-40 3030	CSB-40 3040							
32 ^{-0.025} _{-0.050}	36 +0.025	36 ^{+0.085} _{+0.045}	31.990 32.085	1.970 2.005 1.2	0.4						CSB-40 3220		CSB-40 3230	CSB-40 3240								
35 ^{-0.025} _{-0.050}	39 +0.025	39 ^{+0.085} _{+0.045}	34.990 35.085		0.4				CSB-40 3512	CSB-40 3515	CSB-40 3520	CSB-40 3525	CSB-40 3530	CSB-40 3540	CSB-40 3550							
38 ^{-0.025} _{-0.050}	42 +0.025	42 ^{+0.085} _{+0.045}	37.990 38.085													CSB-40 3815			CSB-40 3830	CSB-40 3840		
40 -0.025 -0.050	44 +0.025	44 ^{+0.085} _{+0.045}	39.990 40.085							CSB-40 4012		CSB-40 4020	CSB-40 4025	CSB-40 4030	CSB-40 4040	CSB-40 4050						

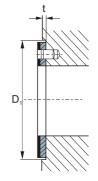

CSB-40 Metric cylindrical bushes

												0			U	nit:mr
Axle	Housing		ID after	Wall thick-	f,	f ₂					L.	0 0.40				
	H7	tolerance	fixed	ness	•1	•2	20	25	30	40	50	60	70	80	100	115
45 -0.025 -0.050	50 +0.025	50 ^{+0.085} _{+0.045}					CSB-40 4520	CSB-40 4525	CSB-40 4530	CSB-40 4540	CSB-40 4550					
50 -0.025 -0.050	55 ^{+0.030}	55 ^{+0.100} _{+0.055}	49.990 50.110				CSB-40 5020		CSB-40 5030	CSB-40 5040	CSB-40 5050	CSB-40 5060				
55 ^{-0.030} _{-0.060}	60 +0.030	60 ^{+0.100} _{+0.055}	54.990 55.110						CSB-40 5530	CSB-40 5540	CSB-40 5550	CSB-40 5560				
60 ^{-0.030} _{-0.060}	65 +0.030	65 ^{+0.100} _{+0.055}	59.990 60.110	2.460 2.505	1.8	0.6			CSB-40 6030	CSB-40 6040	CSB-40 6050	CSB-40 6060	CSB-40 6070			
		70 +0.100 +0.055							CSB-40 6530	CSB-40 6540	CSB-40 6550	CSB-40 6560	CSB-40 6570			
70 -0.030	75 +0.030	75 ^{+0.100} _{+0.055}								CSB-40 7040	CSB-40 7050	CSB-40 7060	CSB-40 7070	CSB-40 7080		
75 -0.030 -0.060	80 +0.030	80 +0.100 +0.055	74.990 75.110						CSB-40 7530	CSB-40 7540	CSB-40 7550	CSB-40 7560	CSB-40 7570	CSB-40 7580		
80 -0.030	85 +0.035	85 ^{+0.120} _{+0.070}	80.020 80.155							CSB-40 8040	CSB-40 8050	CSB-40 8060	CSB-40 8070	CSB-40 8080	CSB-40 80100	
85 -0.035	90 +0.035	90 +0.120								CSB-40 8540		CSB-40 8560		CSB-40 8580	CSB-40 85100	
		95 +0.120 +0.070	90.020 90.155							CSB-40 9040	CSB-40 9050	CSB-40 9060		CSB-40 9080	CSB-40 90100	
		100+0.120	95.020 95.155	2.440 2.490	1.8	0.6					CSB-40 9550	CSB-40 9560		CSB-40 9580	CSB-40 95100	
		105 ^{+0.120} _{+0.070}		2.490							CSB-40 10050	CSB-40 10060		CSB-40 10080		CSB-4 10011
		110 ^{+0.120} _{+0.070}										CSB-40 10560		CSB-40 10580		CSB-4 10511
		115 ^{+0.120} _{+0.070}										CSB-40 11060		CSB-40 11080		CSB-4 11011
		125+0.170										CSB-40 12060		CSB-40 12080	CSB-40 120100	
		130+0.170										CSB-40 12560			CSB-40 125100	CSB-4 12511
130 _{-0.040}	135 ^{+0.040}	135+0.170	130.070 130.210	2.415 2.465	1.0	0.6						CSB-40 13060		CSB-40 13080	CSB-40 130100	
		145 ^{+0.170} _{+0.100}	140.210	2.465	1.0	0.6						CSB-40 14060		CSB-40 14080	CSB-40 140100	
		155 ^{+0.170} _{+0.100}										CSB-40 15060		CSB-40 15080	CSB-40 150100	
160 _{-0.040}	165 ^{+0.040}	165 ^{+0.170} _{+0.100}	160.070 160.210									CSB-40 16060		CSB-40 16080	CSB-40 160100	16011
180 _{-0.040}	185 ^{+0.046}	185 ^{+0.210} _{+0.130}	180.070 180.216											CSB-40 18080	CSB-40 180100	
		195 ^{+0.210} _{+0.130}		2.415	1.8	0.6								CSB-40 19080	CSB-40 190100	
200 _{-0.046}	205 ^{+0.046}	205 ^{+0.210} _{+0.130}	200.070 200.216	2.465	1.8	0.0						CSB-40 20060		CSB-40 20080	CSB-40 200100	
220 _{-0.046}	225 ^{+0.046}	225 ^{+0.210} _{+0.130}	220.070 220.216											CSB-40 22080	CSB-40 220100	
		255 ^{+0.260} _{+0.170}												CSB-40 25080	CSB-40 250100	
260 _{-0.052}	265 ^{+0.052}	265 ^{+0.260} _{+0.170}	260.070 260.222	2.415		0.6								CSB-40 26080	CSB-40 260100	
		285 ^{+0.260} _{+0.170}		2.465	1.8	0.0								CSB-40 28080	CSB-40 280100	
300 _{-0.052}	305 ^{+0.052}	305 ^{+0.260} _{+0.170}	300.070 300.222											CSB-40 30080	CSB-40 300100	

CSB-40 Metric flange bushes


		m	


Anda	Housing	OD	ID after	Designation	Wall	£	f			Dimens	sion	
Axle	H7	tolerance	fixed	Designation	thickness	f ₁	f ₂	d ₁	d ₂	d ₃ ±0.5	L±0.25	ℓ ₁ -0.2
6 -0.013	8 +0.015	6 +0.055	5.990	CSB-40F06040				6	8	12	4	
-0.028		+0.025	6.005	CSB-40F06070				0	0	12	7	
8 -0.013	10 +0.015	8 +0.055	7.990	CSB-40F08055				8	10	15	5.5	
-0.028	10	+0.025	8.055	CSB-40F08075					10	13	7.5	
0.040		.0.055	0.000	CSB-40F10070							7	
10 ^{-0.016} _{-0.034}	12 +0.018	10 +0.055 +0.025	9.990 10.058	CSB-40F10090				10	12	18	9	
			10.000	CSB-40F10120							12	
0.016	.0.040	10.005	11 000	CSB-40F12070							7	
12 ^{-0.016} _{-0.034}	14 +0.018	12 +0.065 +0.030	11.990 12.058	CSB-40F12090				12	14	20	9	
			12.000	CSB-40F12120	+0.005	0.6	0.3				12	1
14 ^{-0.016} _{-0.034}	16 ^{+0.018}	14 ^{+0.065} _{+0.030}	13.990	CSB-40F14120	-0.020	0.0	0.5	14	16	22	12	'
-0.034	10	+0.030	14.058	CSB-40F14170				14	10	22	17	
				CSB-40F15090							9	
15 ^{-0.016} _{-0.034}	17 +0.018	15 ^{+0.065} _{+0.030}	14.990 15.058	CSB-40F15120				15	17	23	12	
		*0.000	13.036	CSB-40F15170							17	
16 ^{-0.016} _{-0.034}	18 +0.018	16 ^{+0.065} _{+0.030}	15.990	CSB-40F16120				16	18	24	12	
-0.034	10	+0.030	16.058	CSB-40F16170						- 1	17	
0.046		.0.005	47.000	CSB-40F18120							12	
18 ^{-0.016} _{-0.034}	20 +0.021	18 ^{+0.065} _{+0.030}	17.990 18.061	CSB-40F18170				18	20	26	17	
			10.001	CSB-40F18200							20	
0.020	.0.004	10.075	10.000	CSB-40F20115							11.5	
20 -0.020	23 +0.021	20 +0.075 +0.035	19.990 20.071	CSB-40F20165				20	23	30	16.5	
			20.071	CSB-40F20215							21.5	
22 ^{-0.020} _{-0.041}	25 +0.021	22 ^{+0.075} _{+0.035}	21.990	CSB-40F22150	+0.005	0.6	0.4	22	25	32	15	1.5
	20	+0.035	22.071	CSB-40F22200	-0.025	0.0	0.1			02	20	1.0
-0.020	+0.021	+0.075	24.990	CSB-40F25115							11.5	
25 ^{-0.020} _{-0.041}	28 +0.021	25 +0.035	25.071	CSB-40F25165				25	28	35	16.5	
				CSB-40F25215							21.5	
30 ^{-0.025} _{-0.050}	34 +0.025	30 ^{+0.075} _{+0.035}	29.990	CSB-40F30160				30	34	42	16	
-0.050		+0.035	30.085	CSB-40F30260					0.	12	26	
35 ^{-0.025} _{-0.050}	39 +0.025	35 ^{+0.085} _{+0.045}	34.990	CSB-40F35160	+0.005	1.2	0.4	35	39	47	16	2
-0.050		+0.045	35.085	CSB-40F35260	-0.030	1.2	0.4			,,,	26	_
40 -0.025	44 +0.025	40 +0.085 +0.045	39.990	CSB-40F40260				40	44	53	26	
-0.050	77	+0.045	40.085	CSB-40F40400				-10	77		40	

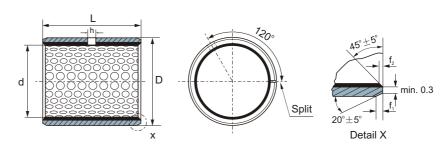

CSB-40 Metric thrust washer and strip

Metric thrust washer

Unit:mm

			Washer o	dimension		Installati	on size	
Axle	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t±0.2	D₁+0.12
8	CSB-40WC10	10	20		15			20
10	CSB-40WC12	12	24		18	1.5		24
12	CSB-40WC14	14	26		20			26
14	CSB-40WC16	16	30		23	2		30
16	CSB-40WC18	18	32		25			32
18	CSB-40WC20	20	36	l . <u>-</u>	28	3	1	36
20	CSB-40WC22	22	38	1.5	30		ı	38
22	CSB-40WC24	24	42		33	3		42
24	CSB-40WC26	26	44		35			44
26	CSB-40WC28	28	48		38			48
30	CSB-40WC32	32	54		43			54
36	CSB-40WC38	38	62		50			62
40	CSB-40WC42	42	66		54	4		66
46	CSB-40WC48	48	74		61			74
50	CSB-40WC52	52	78	2	65		1.5	78
60	CSB-40WC62	62	90		76			90

Metric standard strip

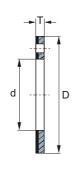

Unit:mm

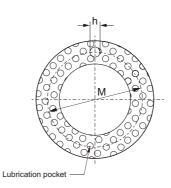
Туре	Length±1	Width±1	Thickness -0.05
CSB-40SP	500	150	1.0
CSB-40SP	500	150	1.5
CSB-40SP	500	150	2.0
CSB-40SP	500	150	2.5

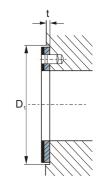
CSB-20 Metric cylindrical bushes

Axle	Housing	OD	ID after	Wall	Oil	f₁	f ₂					L.	0 0.40				
h8		tolerance	fixed	thick- ness	hole	1	12	10	15	20	25	30	35	40	45	50	60
		12 ^{+0.065} _{+0.030}						CSB-20 1010	CSB-20 1015	CSB-20 1020							
		14 ^{+0.065} _{+0.030}						CSB-20 1210	CSB-20 1215	CSB-20 1220							
		16 ^{+0.065} _{+0.030}		0.955		0.6	0.3		CSB-20 1415	CSB-20 1420							
		17 ^{+0.065} _{+0.030}		0.980	4	0.6	0.3		CSB-20 1515	CSB-20 1520	CSB-20 1525						
		18 ^{+0.065} _{+0.030}			4				CSB-20 1615	CSB-20 1620	CSB-20 1625						
18 _{-0.027}	20 ^{+0.021}	20 ^{+0.075} _{+0.035}	18.040 18.111						CSB-20 1815	CSB-20 1820	CSB-20 1825						
		23 ^{+0.075} _{+0.035}							CSB-20 2015	CSB-20 2020	CSB-20 2025	CSB-20 2030					
		25 ^{+0.075} _{+0.035}		1.445 1.475		0.6	0.4		CSB-20 2215		CSB-20 2225						
		28 ^{+0.075} _{+0.035}							CSB-20 2515	CSB-20 2520	CSB-20 2525	CSB-20 2530					
28 _{-0.033}	32 ^{+0.025}	32 ^{+0.085} _{+0.045}	28.060 28.155		6					CSB-20 2820		CSB-20 2830					
30 _{-0.033}	34 ^{+0.025}	34 ^{+0.085} _{+0.045}	30.060 30.155	1.935		1.2	0.4			CSB-20 3020	CSB-20 3025	CSB-20 3030		CSB-20 3040			
35 _{-0.039}	39 ^{+0.025}	39 ^{+0.085} _{+0.045}	35.060 35.155	1.970		1.2	0.4			CSB-20 3520		CSB-20 3530	CSB-20 3535	CSB-20 3540			
40 _{-0.039}		44 ^{+0.085} _{+0.045}								CSB-20 4020		CSB-20 4030		CSB-20 4040		CSB-20 4050	
45 _{-0.039}	50 ^{+0.025}	50 ^{+0.085} _{+0.045}								CSB-20 4520		CSB-20 4530		CSB-20 4540	CSB-20 4545	CSB-20 4550	
		55 ^{+0.100} _{+0.055}		2.415	8	1 Ω	0.6					CSB-20 5030		CSB-20 5040		CSB-20 5050	CSB-20 5060
55 _{-0.046}	60 ^{+0.030}	60 ^{+0.100} _{+0.055}		2.460		1.8	0.6					CSB-20 5530		CSB-20 5540		CSB-20 5550	CSB-20 5560
60 _{-0.046}	65 ^{+0.030}	65 ^{+0.100} _{+0.055}	60.080 60.200									CSB-20 6030		CSB-20 6040		CSB-20 6050	CSB-20 6060

CSB-20 Metric cylindrical bushes


Axle	Housing	OD	ID after	Wall	Oil							L _{-0.40}				
h8	H7	tolerance	fixed	thick- ness	hole	f ₁	f ₂	40	50	60	80	90	95	100	110	120
65 _{-0.046}	70 +0.030	70 ^{+0.100} _{+0.055}	65.080 65.200					CSB-20 6540		CSB-20 6560						
70 -0.046	75 ^{+0.030}	75 ^{+0.100} _{+0.055}	70.080 70.200	2.415 2.460	8	1.8	0.6	CSB-20 7040	CSB-20 7050		CSB-20 7080					
75 _{-0.046}	80 +0.030	80 ^{+0.100} _{+0.055}	75.080 75.200					CSB-20 7540		CSB-20 7560	CSB-20 7580					
80 _{-0.046}	85 ^{+0.035}	85 ^{+0.120} _{+0.070}	80.100 80.265					CSB-20 8040		CSB-20 8060	CSB-20 8080					
85 _{-0.054}	90 +0.035	90 +0.120 +0.070	85.100 85.265					CSB-20 8540		CSB-20 8560	CSB-20 8580					
90 _{-0.054}	95 ^{+0.035}	95 ^{+0.120} _{+0.070}	90.100 90.265			1.8	0.6	CSB-20 9040		CSB-20 9060	CSB-20 9080	CSB-20 9090				
100 _{0.054}	105 ^{+0.035}	105 ^{+0.120} _{+0.070}	100.100 100.265			1.0	0.6		CSB-20 10050		CSB-20 10080		CSB-20 10095			
105 _{0.054}	110 +0.035	110 ^{+0.120} _{+0.070}	105.110 105.265		9.5					CSB-20 10560	CSB-20 10580		CSB-20 10595		CSB-20 105110	
110 _{-0.054}	115 ^{+0.035}	115 ^{+0.120} _{+0.070}	110.110 110.265							CSB-20 11060	CSB-20 11080		CSB-20 11095		CSB-20 110110	
120 _{0.054}	125 ^{+0.040}	125 ^{+0.170} _{+0.100}	120.110 120.270							CSB-20 12060	CSB-20 12080				CSB-20 120110	
125 _{0.063}	130 ^{+0.040}	130 ^{+0.170} _{+0.100}	125.110 125.270							CSB-20 12560					CSB-20 125110	
130_0.063	135 ^{+0.040}	135 ^{+0.170} _{+0.100}	130.110 130.270						13050	13060				CSB-20 130100		
140 _{-0.063}	145 ^{+0.040}	145 ^{+0.170} _{+0.100}	140.110 140.270						CSB-20 14050	CSB-20 14060	CSB-20 14080			CSB-20 140100		
150 _{-0.063}	155 ^{+0.040}	155 ^{+0.170} _{+0.100}	150.110 150.270	2.385					CSB-20 15050	CSB-20 15060				CSB-20 150100		
160 _{-0.063}	165 ^{+0.040}	165 ^{+0.170} _{+0.100}	160.110 160.270	2.450					CSB-20 16050	CSB-20 16060	CSB-20 16080			CSB-20 160100		
170 _{0.063}	175 ^{+0.040}	175 ^{+0.170} _{+0.100}	170.110 170.270						CSB-20 17050		CSB-20 17080			CSB-20 170100		
180_0.063	185 ^{+0.046}	185 ^{+0.210} _{+0.130}	180.110 180.276		9.5	1.8	0.6		CSB-20 18050	CSB-20 18060	CSB-20 18080			CSB-20 180100		
190 _{0.072}	195 ^{+0.046}	10.100	190.110 190.276						19050	19060				CSB-20 190100		CSB-20 190120
200 _{-0.072}		205 ^{+0.210} _{+0.130}	200.110 200.276						CSB-20 20050	CSB-20 20060	CSB-20 20080			CSB-20 200100		CSB-20 200120
		225 ^{+0.210} _{+0.130}	220.110 220.276						CSB-20 22050	22060				CSB-20 220100		CSB-20 220120
240 _{0.072}	245 ^{+0.046}	245 ^{+0.210} _{+0.130}	240.110 240.276						CSB-20 24050		CSB-20 24080			CSB-20 240100		CSB-20 240120
250 _{0.072}		255 ^{+0.260} _{+0.170}	250.110 250.282		9.5				25050	25060				CSB-20 250100		CSB-20 250120
260 _{0.081}	265 ^{+0.052}	265 ^{+0.260} _{+0.170}	260.110 260.282		0.0				CSB-20 26050	CSB-20 26060	CSB-20 26080			CSB-20 260100		CSB-20 260120
280 _{0.081}	285 ^{+0.052}	285 ^{+0.260} _{+0.170}	280.110 280.282							CSB-20 28050	CSB-20 28060	CSB-20 28080			CSB-20 280100	
300 _{-0.081}	305 ^{+0.052}	305 ^{+0.260} _{+0.170}	300.110 300.282						CSB-20 30050		CSB-20 30080			CSB-20 300100		CSB-20 300120



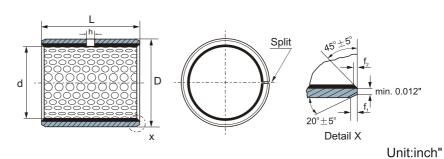

CSB-20 Metric thrust washer and strip

Metric thrust washer

Unit:mm

A I .	Designation		Washer din	nension		Ins	tallation siz	ze
Axle	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t ±0.2	D ₁ +0.12
8	CSB-20WC10	10	20		15	1.5		20
10	CSB-20WC12	12	24		18	1.5		24
12	CSB-20WC14	14	26		20			26
14	CSB-20WC16	16	30		23	2		30
16	CSB-20WC18	18	32		25			32
18	CSB-20WC20	20	36		28			36
20	CSB-20WC22	22	38	1.5	30	3	1	38
22	CSB-20WC24	24	42		33) S		42
24	CSB-20WC26	26	44		35			44
26	CSB-20WC28	28	48		38			48
30	CSB-20WC32	32	54		43			54
36	CSB-20WC38	38	62		50			62
40	CSB-20WC42	42	66		54	4		66
46	CSB-20WC48	48	74		61			74
50	CSB-20WC52	52	78	2	65		1.5	78
60	CSB-20WC62	62	90		76			90

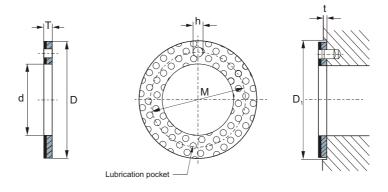
Metric standard strip



Lubrication pocket

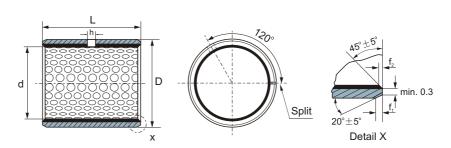
Туре	Length±1	Width±1	Thickness -0.05
CSB-20SP	500	150	1.0
CSB-20SP	500	150	1.5
CSB-20SP	500	150	2.0
CSB-20SP	500	150	2.5

CSB-20 Inch cylindrical bushes


											<u> </u>	11t:inch
Recom	mended	installed						1 0 04	0			
shaft Dia	housing bore	bearing d				L	.engtn	±0.01	U			
0.3648 0.3639	0.4694 0.4687	0.3694 0.3667	CSB-20 06IB06	CSB-20 06IB08	CSB-20 06IB12							
0.4273 0.4263	0.5319 0.5312	0.4319 0.4292	CSB-20 07IB08	CSB-20 07IB12								
0.4897 0.4887	0.5944 0.5937	0.4944 0.4917	CSB-20 08IB06	CSB-20 08IB08	CSB-20 08IB10	CSB-20 08IB14						
0.5522 0.5512	0.6569 0.6562	0.5569 0.5542	CSB-20 09IB08	CSB-20 09IB12								
0.6146 0.6136	0.7195 0.7178	0.6195 0.6167	CSB-20 10IB08	CSB-20 10IB10	CSB-20 10IB12	CSB-20 10IB14						
0.6770 0.6760	0.7820 0.7812	0.6820 0.6792	CSB-20 11IB14									
0.7390 0.7378	0.8758 0.8750	0.7444 0.7412	CSB-20 12IB08	CSB-20 12IB12	CSB-20 12IB16							
0.8639 0.8627	1.0008 1.0000	0.8694 0.8662	CSB-20 14IB12	CSB-20 14IB14	CSB-20 14IB16							
0.9888 0.9876	1.1258 1.1250	0.9944 0.9912	CSB-20 16IB12	CSB-20 16IB16	CSB-20 16IB24							
1.1138 1.1126	1.2822 1.2812	1.1202 1.1164	CSB-20 18IB12	CSB-20 18IB16								
1.2387 1.2371	1.4072 1.4062	1.2452 1.2414	CSB-20 20IB12	CSB-20 20IB16	CSB-20 20IB20	CSB-20 20IB28						
1.3635 1.3619	1.5322 1.5312	1.3702 1.3664	CSB-20 22IB16	CSB-20 22IB22	CSB-20 22IB28							
1.4884 1.4868	1.6572 1.6562	1.4952 1.4914	CSB-20 24IB16	CSB-20 24IB20	CSB-20 24IB24	CSB-20 24IB32						
1.6133 1.6117	1.7822 1.7812	1.6202 1.6164	CSB-20 26IB16	CSB-20 26IB24								
1.7383 1.7367	1.9385 1.9375	1.7461 1.7415	CSB-20 28IB16	CSB-20 28IB24	CSB-20 28IB28	CSB-20 28IB32						
1.8632 1.8616	2.0637 2.0625	1.8713 1.8665	CSB-20 30IB16	CSB-20 30IB30	CSB-20 30IB36							
1.9881 1.9863	2.1887 2.1875	1.9963 1.9915	CSB-20 32IB16	CSB-20 32IB24	CSB-20 32IB32	CSB-20 32IB40						
2.2378 2.2360	2.4387 2.4375	2.2463 2.2415	CSB-20 36IB32	CSB-20 36IB36	CSB-20 36IB40							
2.4875 2.4857	2.6887 2.6875	2.4963 2.4915	CSB-20 40IB32	CSB-20 40IB40								
2.7351 2.7333	2.9387 2.9375	2.7457 2.7393	CSB-20 44IB32	CSB-20 44IB40	CSB-20 44IB48	CSB-20 44IB56						
2.9849 2.9831	3.1889 3.1875	2.9959 2.9893	CSB-20 48IB32	CSB-20 48IB48	CSB-20 48IB60							
3.4844 3.4822	3.6889 3.6875	3.4959 3.4893	CSB-20 56IB40	CSB-20 56IB48	CSB-20 56IB60							
3.9839 3.9817	4.1889 4.1875	3.9959 3.9893	CSB-20 64IB48	CSB-20 64IB60	CSB-20 64IB76							

CSB-20 Inch thrust washer

Inch Thrust washer

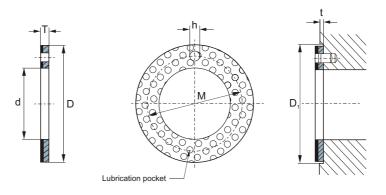


Unit:inch"

		Dimens	ion		instal	lation size	
Specification	inner side d+0.010	outside D-0.010	Т	M -0.010	h +0.010	t ±0.010	D1 +0.010
CSB-20 WC06IB	0.500	0.875		0.692	0.067		0.875
CSB-20 WC07IB	0.562	1.000		0.786	0.067		1.000
CSB-20 WC08IB	0.625	1.125		0.880			1.125
CSB-20 WC09IB	0.687 1.187 0.750 1.250		0.942	0.000		1.187	
CSB-20 WC10IB	0.750	1.250		1.005	0.099	0.04	1.250
CSB-20 WC11IB	0.812	1.375		1.099			1.375
CSB-20 WC12IB	0.875	5 1.500 7 1.625	0.0000	1.192			1.500
CSB-20 WC13IB	0.937		0.0660 0.0625	1.286	0.130		1.625
CSB-20 WC14IB	1.000		0.0020	1.380			1.750
CSB-20 WC16IB	1.125	2.000		1.567			2.000
CSB-20 WC18IB	1.250	2.125		1.692	0.161		2.125
CSB-20 WC20IB	1.375	2.250		1.817			2.250
CSB-20 WC22IB	1.500	2.500		2.005			2.500
CSB-20 WC24IB	1.625	2.625		2.130			2.625
CSB-20 WC26IB	1.750	2.750		2.255	0.402		2.750
CSB-20 WC28IB	2.000	3.000	0.0070	2.505	0.192		3.000
CSB-20 WC30IB	2.125	3.125	0.0970	2.630		0.07	3.125
CSB-20 WC32IB	2.250	3.250	0.0933	2.755			3.250

CSB-22 Metric cylindrical bushes

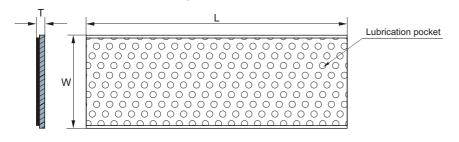
	Housing		ID after	Wall thick-	Oil	f ₁	f ₂					L.	0 0.40						
h8		tolerance		ness	hole	-1	•2	10	15	20	25	30	35	40	45	50	60		
10_0.022	12 ^{+0.018}	12 ^{+0.065} _{+0.030}	10.040 10.108					CSB-22 1010	CSB-22 1015	CSB-22 1020									
12 _{-0.027}	14+0.018	14 ^{+0.065} _{+0.030}	12.010					CSB-22 1210	CSB-22 1215	CSB-22 1220									
14	+0.018	16 +0.065	14.040 14.108	0.955			0.0		CSB-22 1415	CSB-22 1420									
15 _{-0.027}	17 ^{+0.018}	17 ^{+0.065} _{+0.030}	15.040 15.108	0.980	,	0.6	0.3		CSB-22 1515	CSB-22 1520	CSB-22 1525								
16,027	18 ^{+0.018}	18+0.065	16.040 16.108		4				CSB-22 1615	CSB-22 1620	CSB-22 1625								
18 _{-0.027}	20 ^{+0.021}	20 ^{+0.075} _{+0.035}	18.040 18.111					CSB-22 1815	CSB-22 1820	CSB-22 1825									
20 _{-0.033}	23 ^{+0.021}	23 ^{+0.075} _{+0.035}	20.050 20.131						CSB-22 2015	CSB-22 2020	CSB-22 2025	CSB-22 2030							
22 _{-0.033}	25 ^{+0.021}	25 ^{+0.075} _{+0.035}	22.050 22.131	1.445 1.475		0.6	0.4		CSB-22 2215		CSB-22 2225								
25 _{-0.033}	28 ^{+0.021}	28 ^{+0.075} _{+0.035}	25.050 25.131						CSB-22 2515	CSB-22 2520	CSB-22 2525	CSB-22 2530							
28 _{-0.033}	32 ^{+0.025}	32 ^{+0.085} _{+0.045}	28.060 28.155		6					CSB-22 2820		CSB-22 2830							
30 _{-0.033}	34 ^{+0.025}	34 ^{+0.085} _{+0.045}	30.060 30.155	1.935		1.2	0.4			CSB-22 3020	CSB-22 3025	CSB-22 3030		CSB-22 3040					
35 _{-0.039}	39 ^{+0.025}	39 ^{+0.085} _{+0.045}	35.060 35.155	1.970		1.2	0.4			CSB-22 3520		CSB-22 3530	CSB-22 3535	CSB-22 3540					
40 _{-0.039}	44 ^{+0.025}	44 ^{+0.085} _{+0.045}	40.060 40.155							CSB-22 4020		CSB-22 4030		CSB-22 4040		CSB-22 4050			
45 _{-0.039}	50 ^{+0.025}	50 ^{+0.085} _{+0.045}	45.080 45.195							CSB-22 4520		CSB-22 4530		CSB-22 4540	CSB-22 4545	CSB-22 4550			
50 _{-0.039}		55 ^{+0.100} _{+0.055}	50.080 50.200	2.415	8	1.0	0.6					CSB-22 5030		CSB-22 5040		CSB-22 5050	CSB-22 5060		
55 _{-0.046}	60 ^{+0.030}	60 ^{+0.100} _{+0.055}	55.080 55.200	2.460		1.8	0.6	0.6	0.6					CSB-22 5530		CSB-22 5540		CSB-22 5550	CSB-22 5560
60 _{-0.046}	65 ^{+0.030}	65 ^{+0.100} _{+0.055}	60.080 60.200									CSB-22 6030		CSB-22 6040		CSB-22 6050	CSB-22 6060		


CSB-22 Metric cylindrical bushes

															UI	nit:mm	
Axle	Housing	OD	ID after	Wall thick-	Oil	f,	f ₂					L _{-0.40}					
h8	H7	tolerance	fixed	ness	hole	1	2	40	50	60	80	90	95	100	110	120	
65 _{-0.046}	70 +0.030	70 ^{+0.100} _{+0.055}	65.080 65.200					CSB-22 6540		CSB-22 6560							
70 -0.046	75 ^{+0.030}	75 ^{+0.100} _{+0.055}	70.080 70.200	2.415 2.460	8	1.8	0.6	CSB-22 7040	CSB-22 7050	CSB-22	CSB-22 7080						
75 _{-0.046}	80 +0.030	80 ^{+0.100} _{+0.055}	75.080 75.200					CSB-22 7540		CSB-22 7560	CSB-22 7580						
80 -0.046	85 ^{+0.035}	85 ^{+0.120} _{+0.070}	80.100 80.265					CSB-22 8040		CSB-22 8060	CSB-22 8080						
85 -0.054	90 +0.035	90 +0.120 +0.070	85.100 85.265					CSB-22 8540		CSB-22 8560	CSB-22 8580						
90 -0.054	95 ^{+0.035}	95 ^{+0.120} _{+0.070}	90.100 90.265					CSB-22 9040		CSB-22 9060	CSB-22 9080	CSB-22 9090					
100 _{-0.054}	105 ^{+0.035}	105+0.120	100.100 100.265			1.8	0.6		CSB-22 10050		CSB-22 10080		CSB-22 10095				
105 _{-0.054}	110 ^{+0.035}	110 ^{+0.120} _{+0.070}	105.110 105.265							CSB-22 10560	CSB-22 10580		CSB-22 10595		CSB-22 105110		
110 _{-0.054}	115 ^{+0.035}	115 ^{+0.120} _{+0.070}	110.110 110.265		9.5					CSB-22 11060	CSB-22 11080		CSB-22 11095		CSB-22 110110		
120 _{-0.054}	125 ^{+0.040}	125+0.170	120.110 120.270							CSB-22 12060	CSB-22 12080				CSB-22 120110		
125 _{-0.063}	130 ^{+0.040}	130+0.170	125.110 125.270							CSB-22 12560					CSB-22 125110		
130 _{-0.063}	135 ^{+0.040}	135 ^{+0.170} _{+0.100}	130.110 130.270						CSB-22 13050	CSB-22 13060	CSB-22 13080			CSB-22 130100			
140 _{-0.063}	145 ^{+0.040}	145+0.170	140.110 140.270						CSB-22 14050	CSB-22 14060				CSB-22 140100			
150 _{-0.063}	155 ^{+0.040}	155 ^{+0.170} _{+0.100}	150.110 150.270	2.385					CSB-22 15050	CSB-22 15060	CSB-22 15080			CSB-22 150100			
160 _{-0.063}	165 ^{+0.040}	165 ^{+0.170} _{+0.100}	160.110 160.270	2.450					CSB-22 16050	CSB-22 16060	CSB-22 16080			CSB-22 160100			
170 _{-0.063}	175 ^{+0.040}	175 ^{+0.170} _{+0.100}	170.110 170.270						CSB-22 17050		CSB-22 17080			CSB-22 170100			
180 _{-0.063}	185 ^{+0.046}	185 ^{+0.210} _{+0.130}	180.110 180.276		9.5	1.8	0.6		CSB-22 18050	CSB-22 18060	CSB-22 18080			CSB-22 180100			
	195 ^{+0.046}		190.110 190.276						CSB-22 19050	CSB-22 19060	CSB-22 19080			CSB-22 190100		CSB-22 190120	
200 _{-0.072}	205 ^{+0.046}	205+0.210	200.110 200.276						CSB-22 20050	CSB-22 20060				CSB-22 200100		CSB-22 200120	
220 _{-0.072}	225 ^{+0.046}	225+0.210	220.110 220.276						CSB-22 22050	CSB-22 22060				CSB-22 220100		CSB-22 220120	
	245 ^{+0.046}		240.110 240.276						CSB-22 24050	CSB-22 24060	CSB-22			CSB-22 240100		CSB-22 240120	
	255 ^{+0.052}		250.110 250.282		0					CSB-22 25060				CSB-22 250100		CSB-22 250120	
	265 ^{+0.052}		260.110 260.282		9.5					CSB-22 26060	CSB-22			CSB-22 260100		CSB-22 260120	
	285 ^{+0.052}		280.110 280.282									CSB-22			CSB-22 280100		CSB-22 280120
		305 ^{+0.260} _{+0.170}	300.110 300.282						CSB-22	CSB-22 30060	CSB-22			CSB-22 300100		CSB-22 300120	

CSB-22 Metric thrust washer and strip

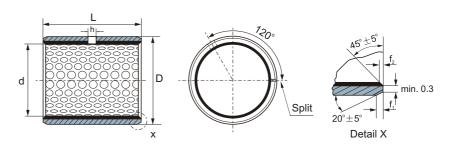
Metric thrust washer



Unit:mm

Anda	Designation		Washer din	nension		Ins	tallation siz	ze
Axle	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t ±0.2	D ₁ +0.12
8	CSB-22WC10	10	20		15	1.5		20
10	CSB-22WC12	12	24		18	1.5		24
12	CSB-22WC14	14	26		20			26
14	CSB-22WC16	16	30		23	2		30
16	CSB-22WC18	18	32		25			32
18	CSB-22WC20	20	36		28			36
20	CSB-22WC22	22	38	1.5	30	3	1	38
22	CSB-22WC24	24	42		33	3		42
24	CSB-22WC26	26	44		35			44
26	CSB-22WC28	28	48		38			48
30	CSB-22WC32	32	54		43			54
36	CSB-22WC38	38	62		50			62
40	CSB-22WC42	42	66		54	4		66
46	CSB-22WC48	48	18 74		61			74
50	CSB-22WC52	52	78	2	65		1.5	78
60	CSB-22WC62	62	90		76			90

Metric standard strip

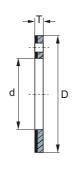


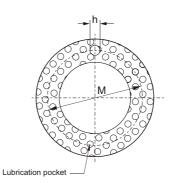
Туре	Length±1	Width±1	Thickness -0.05
CSB-22SP	500	150	1.0
CSB-22SP	500	150	1.5
CSB-22SP	500	150	2.0
CSB-22SP	500	150	2.5

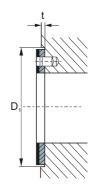
CSB-80 Metric cylindrical bushes

																<u> </u>	111.1111111
	Housing		ID after	Wall thick-	Oil	f,	f ₂					L .	0.40				
h8		tolerance		ness	hole	'	2	10	15	20	25	30	35	40	45	50	60
10 _{-0.022}	12 ^{+0.018}	12 ^{+0.065} _{+0.030}	10.040 10.108					CSB-80 1010	CSB-80 1015	CSB-80 1020							
	14 ^{+0.018}		12.040 12.108					CSB-80 1210	CSB-80 1215	CSB-80 1220							
	16 ^{+0.018}			0.955		0.6	0.0		CSB-80 1415	CSB-80 1420							
15 _{-0.027}	17 ^{+0.018}	17 ^{+0.065} _{+0.030}	15.040 15.108	0.980	4	0.6	0.3		CSB-80 1515	CSB-80 1520	CSB-80 1525						
	18 ^{+0.018}				4				CSB-80 1615	CSB-80 1620	CSB-80 1625						
	20 ^{+0.021}							CSB-80 1815	CSB-80 1820	CSB-80 1825							
	23 ^{+0.021}								CSB-80 2015	CSB-80 2020	CSB-80 2025	CSB-80 2030					
	25 ^{+0.021}			1.445 1.475		0.6	0.4		CSB-80 2215		CSB-80 2225						
	28 ^{+0.021}					_			CSB-80 2515	CSB-80 2520	CSB-80 2525	CSB-80 2530					
28 _{-0.033}	32 ^{+0.025}	32 ^{+0.085} _{+0.045}	28.060 28.155		6					CSB-80 2820		CSB-80 2830					
30 _{-0.033}	34 ^{+0.025}	34 ^{+0.085} _{+0.045}	30.060 30.155	1.935		1.2	0.4			CSB-80 3020	CSB-80 3025	CSB-80 3030		CSB-80 3040			
35 _{-0.039}	39 ^{+0.025}	39 ^{+0.085} _{+0.045}	35.060 35.155	1.970		1.2	0.4			CSB-80 3520		CSB-80 3530	CSB-80 3535	CSB-80 3540			
40 _{-0.039}	44 ^{+0.025}	44 ^{+0.085} +0.045	40.060 40.155							CSB-80 4020		CSB-80 4030		CSB-80 4040		CSB-80 4050	
	50 ^{+0.025}									CSB-80 4520		CSB-80 4530		CSB-80 4540	CSB-80 4545	CSB-80 4550	
	55 ^{+0.030}			2.415	8	1.8	0.6					CSB-80 5030		CSB-80 5040		CSB-80 5050	CSB-80 5060
55 _{-0.046}	60 ^{+0.030}	60 ^{+0.100} _{+0.055}	55.080 55.200	2.460		1.8	0.6					CSB-80 5530		CSB-80 5540		CSB-80 5550	CSB-80 5560
60 _{-0.046}	65 ^{+0.030}	65 ^{+0.100} _{+0.055}	60.080 60.200									CSB-80 6030		CSB-80 6040		CSB-80 6050	CSB-80 6060

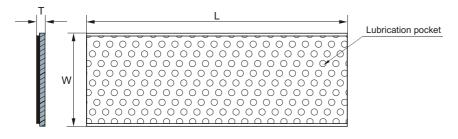
CSB-80 Metric cylindrical bushes


															UI	ııt:mm
Axle h8	Housing H7	OD tolerance	ID after fixed	Wall thick- ness	Oil hole	f ₁	f ₂	L _{-0.40}								
								40	50	60	80	90	95	100	110	120
65 _{-0.046}	70 +0.030	70 ^{+0.100} _{+0.055}	65.080 65.200	2.415 2.460	8	1.8	0.6	CSB-80 6540		CSB-80 6560						
70 -0.046	75 +0.030	75 ^{+0.100} _{+0.055}	70.080 70.200					CSB-80 7040	CSB-80 7050		CSB-80 7080					
75 _{-0.046}	80 +0.030	80 ^{+0.100} _{+0.055}	75.080 75.200					CSB-80 7540		CSB-80 7560	CSB-80 7580					
80 -0.046	85 ^{+0.035}	85 ^{+0.120} _{+0.070}	80.100 80.265	2.385 2.450	9.5	1.8	0.6	CSB-80 8040		CSB-80 8060	CSB-80 8080					
85 _{-0.054}	90 +0.035	90 +0.120 +0.070	85.100 85.265					CSB-80 8540		CSB-80 8560	CSB-80 8580					
90 -0.054	95 ^{+0.035}	95 ^{+0.120} _{+0.070}	90.100 90.265					CSB-80 9040		CSB-80 9060	CSB-80 9080	CSB-80 9090				
100 _{-0.054}	105 ^{+0.035}	105+0.120	100.100 100.265						CSB-80 10050		CSB-80 10080		CSB-80 10095			
105 _{-0.054}	110 +0.035	110 ^{+0.120} _{+0.070}	105.110 105.265							CSB-80 10560	CSB-80 10580		CSB-80 10595		CSB-80 105110	
110 -0.054	115 ^{+0.035}	115 ^{+0.120} _{+0.070}	110.110 110.265							CSB-80 11060	CSB-80 11080		CSB-80 11095		CSB-80 110110	
		125+0.170	120.110 120.270			1.8	0.6			CSB-80 12060	CSB-80 12080				CSB-80 120110	
125 _{-0.063}	130 ^{+0.040}	130+0.170	125.110 125.270							CSB-80 12560					CSB-80 125110	
130 _{-0.063}	135 ^{+0.040}	135 ^{+0.170} _{+0.100}	130.110 130.270						CSB-80 13050	CSB-80 13060				CSB-80 130100		
140 _{-0.063}	145 ^{+0.040}	145 ^{+0.170} _{+0.100}	140.110 140.270						CSB-80 14050	CSB-80 14060	CSB-80 14080			CSB-80 140100		
150 _{-0.063}	155 ^{+0.040}	155 ^{+0.170} _{+0.100}	150.110 150.270						CSB-80 15050	CSB-80 15060				CSB-80 150100		
160 _{-0.063}	165 ^{+0.040}	165 ^{+0.170} _{+0.100}	160.110 160.270						CSB-80 16050	CSB-80 16060	CSB-80 16080			CSB-80 160100		
		175 ^{+0.170} _{+0.100}	170.110 170.270						CSB-80 17050		CSB-80 17080			CSB-80 170100		
180 _{-0.063}	185 ^{+0.046}	185 ^{+0.210} _{+0.130}	180.110 180.276						CSB-80 18050	CSB-80 18060	CSB-80 18080			CSB-80 180100		
190 _{-0.072}	195 ^{+0.046}	195 ^{+0.210} _{+0.130}	190.110 190.276							CSB-80 19060	CSB-80			CSB-80 190100		CSB-80 190120
200 _{-0.072}	205 ^{+0.046}	205+0.210	200.110 200.276							CSB-80	CSB-80 20080			CSB-80 200100		CSB-80 200120
220 _{-0.072}	225 ^{+0.046}	225+0.210	220.110 220.276		9.5				CSB-80 22050	CSB-80 22060				CSB-80 220100		CSB-80 220120
		245 ^{+0.210} _{+0.130}	240.110 240.276							CSB-80	CSB-80 24080			CSB-80 240100		CSB-80 240120
		255 ^{+0.260} _{+0.170}								CSB-80 25060	CSB-80			CSB-80 250100		CSB-80 250120
		265 ^{+0.260} _{+0.170}								CSB-80	CSB-80 26080			CSB-80 260100		CSB-80 260120
		285 ^{+0.260} _{+0.170}	280.110 280.282							CSB-80	CSB-80 28080			CSB-80 280100		CSB-80 280120
		305 ^{+0.260} _{+0.170}							CSB-80		CSB-80			CSB-80 300100		CSB-80 300120




CSB-80 Metric thrust washer and strip

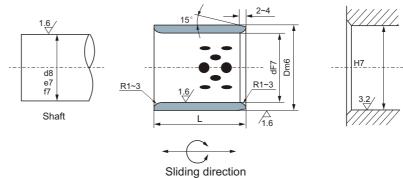
Metric thrust washer



Unit:mm

A1 -	Decignation		Washer din	nension		Ins	tallation siz	ze
Axle	Designation	d +0.25	D -0.25	T -0.05	M ±0.125	h ^{+0.4}	t ±0.2	D ₁ +0.12
8	CSB-80WC10	10	20		15	1.5		20
10	CSB-80WC12	12	24		18	1.5		24
12	CSB-80WC14	14	26		20			26
14	CSB-80WC16	16	30		23	2		30
16	CSB-80WC18	18	32		25			32
18	CSB-80WC20	20	36		28			36
20	CSB-80WC22	22	38	1.5	30		1	38
22	CSB-80WC24	24	42		33	3		42
24	CSB-80WC26	26	44		35			44
26	CSB-80WC28	28	48		38			48
30	CSB-80WC32	32	54		43			54
36	CSB-80WC38	38	62		50			62
40	CSB-80WC42	42	66		54	4		66
46	CSB-80WC48	48	74		61			74
50	CSB-80WC52	52	78	2	65		1.5	78
60	CSB-80WC62	62	90		76			90

Metric standard strip

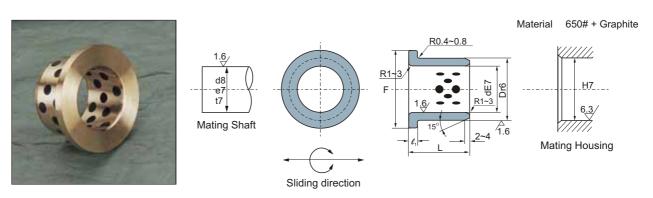

Unit:mm

Туре	Length±1	Width±1	Thickness -0.05
CSB-80SP	500	150	1.0
CSB-80SP	500	150	1.5
CSB-80SP	500	150	2.0
CSB-80SP	500	150	2.5

72

JDB650 Metric cylindrical bushes

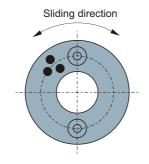
		m

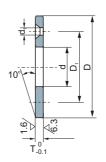

d	F7	Dr	m6							L-0).10).30						
				8	10	12	15	16	20	25	30	35	40	50	60	70	80
8	+0.028	12		JDB650 081208		JDB650 081212											
10	+0.013	14		JDB650 101408		JDB650 101412			JDB650 101420								
12		18				JDB650 121812				JDB650 121825	JDB650 121830						
13		19			JDB650 131910			JDB650 131916									
14	+0.034	20				JDB650 142012			JDB650 142020	JDB650 142025	JDB650 142030						
15	+0.016	21	+0.021			JDB650 152112				JDB650 152125	JDB650 152130						
16		22	+0.008		JDB650 162210	JDB650 162212		JDB650 162216			JDB650 162230		JDB650 162240				
18		24				JDB650 182412		JDB650 182416			JDB650 182430	JDB650 182435	JDB650 182440				
20		28				JDB650 202812				JDB650 202825	JDB650 202830		JDB650 202840	JDB650 202850			
22	+0.041	32				JDB650 223212	JDB650 223215		JDB650 223220	JDB650 223225							
25	+0.020	33					JDB650 253315	JDB650 253316	JDB650 253320	JDB650 253325	JDB650 253330	JDB650 253335		JDB650 253350	JDB650 253360		
30		38	+0.025				JDB650 303815		JDB650 303820	JDB650 303825	JDB650 303830		JDB650 303840	JDB650 303850	JDB650 303860		
35		45							JDB650 354520	JDB650 354525	JDB650 354530		JDB650 354540	JDB650 354550	JDB650 354560		
40	+0.050	50							JDB650 405020	JDB650 405025	JDB650 405030		JDB650 405040	JDB650 405050	JDB650 405060	JDB650 405070	
45	+0.025	55	+0.030								JDB650 455530		JDB650 455540	JDB650 455550	JDB650 455560		
50		60	+0.011								JDB650 506030		JDB650 506040		JDB650 506060	JDB650 506070	

JDB 650 Metric cylindrical bushes

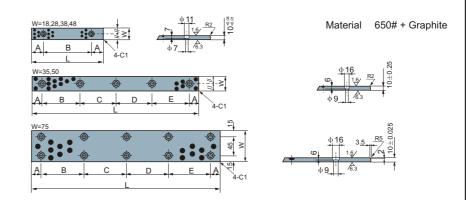
															Jnit:mm
ID	F7	OD	m6).10).30					
				30	35	40	50	60	70	80	100	120	130	140	150
50	+0.050	62		JDB650 506230	JDB650 506235	JDB650 506240	JDB650 506250	JDB650 506260	JDB650 506270						
50	+0.025	65		JDB650 506530		JDB650 506540	JDB650 506550	JDB650 506560	JDB650 506570	JDB650 506580	JDB650 5065100				
55		70				JDB650 557040	JDB650 557050	JDB650 557060	JDB650 557070						
60		74	+0.030 +0.011	JDB650 607430	JDB650 607435	JDB650 607440	JDB650 607450	JDB650 607460	JDB650 607470	JDB650 607480					
60		75		JDB650 607530	JDB650 607535	JDB650 607540	JDB650 607550	JDB650 607560	JDB650 607570	JDB650 607580	JDB650 6075100				
63		75						JDB650 637560	JDB650 637570	JDB650 637580					
65		80					JDB650 658050	JDB650 658060	JDB650 658070	JDB650 658080					
70	+0.060	85			JDB650 708535	JDB650 708540	JDB650 708550	JDB650 708560	JDB650 708570	JDB650 708580	JDB650 7085100				
70	+0.030	90					JDB650 709050	JDB650 709060	JDB650 709070	JDB650 709080					
75		90						JDB650 759060	JDB650 759070	JDB650 759080	JDB650 7590100				
75		95	+0.035					JDB650 759560	JDB650 759570	JDB650 759580	JDB650 7595100				
80		96	+0.013			JDB650 809640	JDB650 809650	JDB650 809660	JDB650 809670	JDB650 809680	JDB650 8096100	JDB650 8096120			
80		100				JDB650 8010040	JDB650 8010050	JDB650 8010060	JDB650 8010070	JDB650 8010080	JDB650 80100100	JDB650 80100120		JDB650 80100140	
90		110		JDB650 9011030			JDB650 9011050	JDB650 9011060	JDB650 9011070	JDB650 9011080	JDB650 90110100	JDB650 90110120			
100	+0.071	120						JDB650 10012060	JDB650 10012070	JDB650 10012080	JDB650 100120100	JDB650 100120120		JDB650 100120140	
110	+0.036	130								JDB650 11013080	JDB650 110130100	JDB650 110130120			
120		140								JDB650 12014080	JDB650 120140100	JDB650 120140120		JDB650 120140140	
125		145									JDB650 125145100	JDB650 125145120			
130		150	+0.040 +0.015								JDB650 130150100		JDB650 130150130		
140	+0.083 +0.043	160									JDB650 140160100			JDB650 140160140	
150		170									JDB650 150170100				JDB650 150170150
160		180									JDB650 160180100				JDB650 160180150

JFB650 Metric flange bushes


Jn		


d	D	ID)E7	0	Dr6	F	ℓ_1).10).30				
							-0.10	15	20	25	30	35	40	50	60	80	100
10	14	10	+0.040 +0.025	14	+0.034	22	2	JFB650 1015	JFB650 1020								
12	18	12		18	+0.023	25		JFB650 1215	JFB650 1220								
13	19	13		19		26		JFB650 1315	JFB650 1320								
14	20	14	+0.050 +0.032	20		27	3	JFB650 1415	JFB650 1420								
15	21	15		21	+0.041 +0.028	28		JFB650 1515	JFB650 1520	JFB650 1525	JFB650 1530						
16	22	16		22		29		JFB650 1615	JFB650 1620	JFB650 1625	JFB650 1630						
20	30	20		30		40		JFB650 2015	JFB650 2020	JFB650 2025	JFB650 2030		JFB650 2040				
25	35	25	+0.061 +0.040	35		45		JFB650 2515	JFB650 2520	JFB650 2525	JFB650 2530		JFB650 2540				
30	40	30		40		50			JFB650 3020	JFB650 3025	JFB650 3030	JFB650 3035	JFB650 3040	JFB650 3050			
31.5	40	31.5		40	+0.050 +0.034	50			JFB650 3120			JFB650 3135					
35	45	35		45		60	5		JFB650 3520		JFB650 3530		JFB650 3540	JFB650 3550			
40	50	40	+0.075 +0.050	50		65			JFB650 4020		JFB650 4030		JFB650 4040	JFB650 4050			
45	55	45		55		70					JFB650 4530		JFB650 4540	JFB650 4550	JFB650 4560		
50	60	50		60	+0.060 +0.041	75					JFB650 5030		JFB650 5040	JFB650 5050	JFB650 5060		
55	65	55		65		80							JFB650 5540		JFB650 5560		
60	75	60		75	+0.062	90							JFB650 6040	JFB650 6050		JFB650 6080	
63	75	63	+0.090	75	+0.043	85	7.5									JFB650 6367	
70	85	70	+0.060	85		105	7.5							JFB650 7050		JFB650 7080	
75	90	75		90	+0.073 +0.051	110									JFB650 7560		
80	100	80		100		120									JFB650 8060	JFB650 8080	JFB650 80100
90	110	90		110	+0.076	130	10								JFB650 9060	JFB650 9080	
100	120	100	+0.107 +0.072	120	+0.054	150	10									JFB650 10080	JFB650 100100
120	140	120		140	+0.088 +0.063	170										JFB650 12080	JFB650 120100

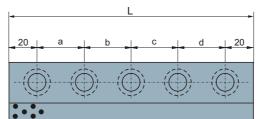
JTW650 Metric thrust washer

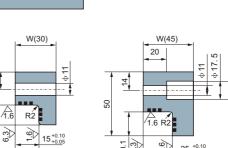


Material 650# + Graphite

Stanard No.	d	D	T ⁰		В	olt	
Stanard No.	d	D	-0.1	D ₁	Q'ty	size	d1
JTW650 -10	10.2	30					
JTW650 -12	12.2						
JTW650 -13	13.2	40		28			
JTW650 -14	14.2		3		2	М 3	3.5
JTW650 -15	15.2		3	0.5			
JTW650 -16	16.2			35			
JTW650 -16N	10.2	50					
JTW650 -18	18.2	30		35	2	М 3	3.5
JTW650 -20	20.0			35	2	M 5	6
JTW650 -20N	20.2						
JTW650 -25	25.0	55		40	2	M 5	6
JTW650 -25N	25.2	55	5				
JTW650 -30	30.2	60		45		ME	6
JTW650 -35	35.2	70		50	9	M 5	6
JTW650 -40	40.2	80	7	60	2		
JTW650 -45	45.3	90	7	67.5		Me	7
JTW650 -50	50.3	100		75		M 6	7
JTW650 -55	55.3	110		85			
JTW650 -60	60.3	120	8	90			
JTW650 -65	65.3	125		95			
JTW650 -70	70.3	130		100	4	M 8	9
JTW650 -75	75.3	140		110			
JTW650 -80	80.3	150	10	120			
JTW650 -90	90.5	170	10				
JTW650 -100	100.5	190		160		M 10	11
JTW650 -120	120.5	200		175			

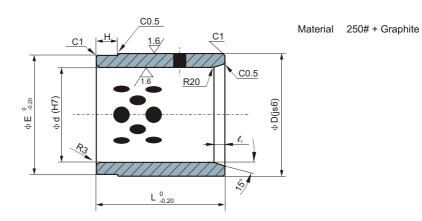
JSP650 Wear plate


Standard No.	W	L	А	В	С	D	Е	Flat Head Screw	No.of Holes													
JSP650 -1875		75	15	45																		
JSP650 -18100	18	100		60																		
JSP650 -18125	10	125	25	75																		
JSP650 -18150		150		100				M 6	2													
JSP650 -2875		75	15	45				IVI O	2													
JSP650 -28100	28	100		50																		
JSP650 -28125	20	125	25	75																		
JSP650 -28150		150		100																		
JSP650 -35100		100		60																		
JSP650 -35150		150		55	55				3													
JSP650 -35200	35	200	20	55	50	55		MO	4													
JSP650 -35250	35	250	20	70	70	70		M 8	4													
JSP650 -35300	38	300		65	65	65	65		5													
JSP650 -35350		350		80	75	75	80		5													
JSP650 -3875		38	75	15	45																	
JSP650 -38100			100		50																	
JSP650 -38125		125	25	75																		
JSP650 -38150		150		100				M 6	0													
JSP650 -4875		40	. 40	10	18	48	48	48	48	48	48	48			75	15	45				IVI O	2
JSP650 -48100													100		50							
JSP650 -48125	48	125	25	75																		
JSP650 -48150		150		100																		
JSP650 -50100		100		60																		
JSP650 -50150	50	50	50	50	150		55	55				3										
JSP650 -50200					50	50	200		55	50	55			4								
JSP650 -50250						250		70	70	70			4									
JSP650 -50300		300		65	65	65	65		5													
JSP650 -50400	75				400	20	90	90	90	90	MO	5										
JSP650 -75150		150	20	110				M 8	4													
JSP650 -75200		200		80	80				6													
JSP650 -75250		250		105	105				6													
JSP650 -75300		300		85	90	85			8													
JSP650 -75400		400		120	120	120			8													
JSP650 -75500		500		115	115	115	115		10													



Material 650# + Graphite

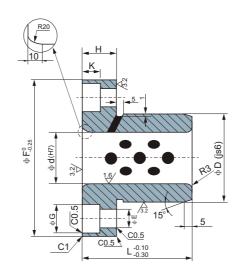
JSL650 Wear plate

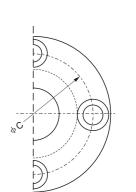


W(20)

									OTHE:TH			
Stanard No.	W	L			Е	Bolt			Sketch			
Stanlard No.	VV		а	b	С	d	Size	Q'ty	OREIGH			
JSL650-20×100		100	60					2				
JSL650-20×150	20	150	55	55			M8	3	A			
JSL650-20×200		200	55	50	55			4				
JSL650-30×100	30	100	60					2				
JSL650-30×150		150	55	55				3	В			
JSL650-30×200	30	200	55	50	55			4				
JSL650-30×250		250	70	70	70		M10	4				
JSL650-45×200		200	55	50	55		IVITO	4				
JSL650-45×250	45	250	70	70	70			4	С			
JSL650-45×300		300	65	65	65	65		5				
JSL650-45×350		350	80	75	75	80		5				

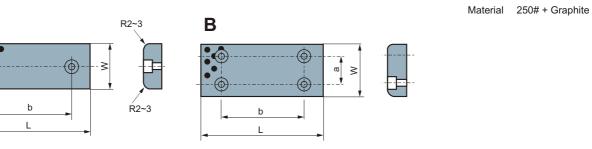
GB250 Self-lubricating bearing

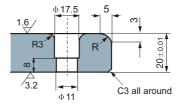

Item	Code	Specification	φD	Ф d	L	φЕ	Н	ℓ_1
1	GB250-30	50 × 30 × 50	50	30	50	49	10	
2	GB250-40	60 × 40 × 60	60	40	60	59	10	5
3	GB250-50	70 × 50 × 75	70	50	75	69	15	
4	GB250-60	80 × 60 × 90	80	60	90	79	20	
5	GB250-80	100 × 80 × 120	100	80	120	99	25	10
6	GB250-100	120 × 100 × 150	120	100	150	119	25	10
7	GB250-120	140 × 120 × 180	140	120	180	139	25	



Material 250# + Graphite

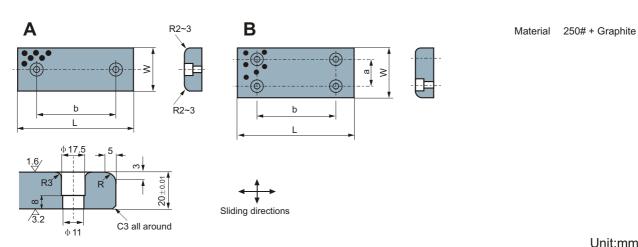
HGB250 Self-lubricating bearing





Item	Code	Specification	φЕ	φD	Ф d	Н	L	φС	φЕ	φG	K
1	HGB250-30	90/50×30×50	90	50	30	20	50	70	11	17.5	10.8
2	HGB250-40	100/60×40×65	100	60	40	20	65	80	11	17.5	10.8
3	HGB250-50	125/75×50×80	125	75	50	20	80	100	11	17.5	10.8
4	HGB250-60	135/85×60×100	135	85	60	20	100	110	11	17.5	10.8
5	HGB250-80	170/110×80×130	170	110	80	25	130	140	14	20	13
6	HGB250-100	190/130×100×160	190	130	100	25	160	160	14	20	13

CSB250 JESF wear plate


Α

Standard No.	W	L	а	b	Sketch
JESF-48×75		75		45	
JESF-48×100		100		50	
JESF-48×125	48	125	_	75	
JESF-48×150		150		100	
JESF-48×200		200		150	А
JESF-75×75		75		25	^
JESF-75×100		100		50	
JESF-75×125	75	125	_	75	
JESF-75×150	75	150		100	
JESF-75×200		200		150	
JESF-75×250		250		200	
JESF-100×100		100		50	
JESF-100×125		125		75	
JESF-100×150	100	150	50	100	
JESF-100×200	100	200	30	150	
JESF-100×250		250		200	
JESF-100×300		300		200	
JESF-125×125		125		75	В
JESF-125×150		150		100	
JESF-125×200	125	200	50	150	
JESF-125×250		250		200	
JESF-125×300		300		200	
JESF-150×150		150		100	
JESF-150×200	150	200	100	150	
JESF-150×250		250		200	

CSB250 JMWP wear plate

Standard No.	W	L	а	b	Sketch
JMWP-28×75		75		45	
JMWP-28×100		100		50	
JMWP-28×125	28	125	_	75	
JMWP-28×150		150		100	
JMWP-28×200		200		150	
JMWP-38×75		75		45	
JMWP-38×100		100		50	
JMWP-38×125	38	125	_	75	
JMWP-38×150		150		100	
JMWP-38×200		200		150	
JMWP-48× 75		75		45	
JMWP-48× 100		100		50	Α
JMWP-48× 125	48	125	_	75	
JMWP-48×150		150		100	
JMWP-48×200		200		150	
JMWP-58×75		75		45	
JMWP-58×100	58	100	_	50	
JMWP-58×150		150		100	
JMWP-75×75		75		25	
JMWP-75×100		100		50	
JMWP-75×125	75	125	_	75	
JMWP-75×150		150		100	
JMWP-75×200		200		150	
JMWP-100×100		100		50	
JMWP-100×125		125		75	
JMWP-100×150	100	150	50	100	
JMWP-100×200		200		150	
JMWP-100×250		250		200	
JMWP-125× 125		125		75	
JMWP-125× 150	125	150	50	100	
JMWP-125× 200	125	200	50	150	Б
JMWP-125× 250		250		200	В
JMWP-150× 150		150		100	
JMWP-150× 200	450	200	100	150	
JMWP-150× 250	150	250	100	200	
JMWP-150× 300		300		250	
JMWP-200× 200		200		150	
JMWP-200× 250	200	250	150	200	
JMWP-200× 300		300		250	

CSB-090(FB090) Metric cylindrical bushes

d	D	f,	f ₂		L -0.40											
u		'1	12	10	15	20	25	30	35	40	50	60	70	80	90	100
10	12			CSB-090 1010	CSB-090 1015	CSB-090 1020										
12	14			CSB-090 1210	CSB-090 1215	CSB-090 1220										
14	16	0.5	0.3	CSB-090 1410	CSB-090 1415	CSB-090 1420	CSB-090 1425									
15	17	0.5	0.5	CSB-090 1510	CSB-090 1515	CSB-090 1520	CSB-090 1525									
16	18			CSB-090 1610	CSB-090 1615	CSB-090 1620	CSB-090 1625									
18	20			1810	1815	CSB-090 1820	1825									
20	23			CSB-090 2010	CSB-090 2015	CSB-090 2020	CSB-090 2025									
22	25			CSB-090 2210	CSB-090 2215	CSB-090 2220	CSB-090 2225	CSB-090 2230								
24	27	0.8	0.4		CSB-090 2415	CSB-090 2420	CSB-090 2425	CSB-090 2430								
25	28				CSB-090 2515	CSB-090 2520	CSB-090 2525	CSB-090 2530								
28	31				CSB-090 2815	CSB-090 2820	CSB-090 2825	CSB-090 2830								
30	34				CSB-090 3015	CSB-090 3020	CSB-090 3025	CSB-090 3030	CSB-090 3035	CSB-090 3040						
32	36	1.0	0.6		CSB-090 3215	CSB-090 3220	CSB-090 3225	CSB-090 3230	CSB-090 3235	CSB-090 3240						
35	39	1.0	0.0		CSB-090 3515	CSB-090 3520	CSB-090 3525	CSB-090 3530	CSB-090 3535	CSB-090 3540						
40	44					CSB-090 4020	CSB-090 4025	CSB-090 4030	CSB-090 4035	CSB-090 4040	CSB-090 4050					
45	50					CSB-090 4520	CSB-090 4525	CSB-090 4530	CSB-090 4535	CSB-090 4540	CSB-090 4550					
50	55					CSB-090 5020	CSB-090 5025	CSB-090 5030	CSB-090 5035	CSB-090 5040	CSB-090 5050	CSB-090 5060				
55	60					CSB-090 5520	5525	CSB-090 5530	5535	5540	5550	5560				
60	65	1.2	8.0				CSB-090 6025	CSB-090 6030	CSB-090 6035	CSB-090 6040	CSB-090 6050	CSB-090 6060	CSB-090 6070			
65	70							6530	6535	CSB-090 6540	6550	6560	6570			
70	75							7030	7035	7040	7050	7060	CSB-090 7070	7080		
75	80							CSB-090 7530	CSB-090 7535	CSB-090 7540	CSB-090 7550	CSB-090 7560	CSB-090 7570	CSB-090 7580		
80	85							8030	8035	8040	8050	8060	CSB-090 8070	8080		
85	90							8530	CSB-090 8535	8540	8550	8560	CSB-090 8570	8580	8590	
90	95							CSB-090 9030	CSB-090 9035	CSB-090 9040	9050	9060	CSB-090 9070	9080	9090	
95	100	1.4	1.4 0.8							CSB-090 9540	9550	CSB-090 9560	9570	9580	CSB-090 9590	95100
100	105										10050	10060	10070	10080	CSB-090 10090	100100
105	110										10550	10560	10570	10580	CSB-090 10590	105100
110	115										CSB-090 11050	CSB-090 11060	CSB-090 11070	CSB-090 11080	CSB-090 11090	

CSB-090(FB090) Metric cylindrical bushes

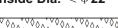
				Unit:mm									
d	D	f ₁	f ₂					L .	0.40			I	
				25	30	35	40	50	60 CSB-090	70 CSB-090	80 CSB-090	90 CSB-090	100 CSB-090
115	120							CSB-090 11550	11560	11570	11580	11590	115100
120	125								CSB-090 12060	CSB-090 12070	CSB-090 12080	CSB-090 12090	CSB-090 120100
125	130								CSB-090 12560	CSB-090 12570	CSB-090 12580	CSB-090 12590	CSB-090 125100
130	135								CSB-090 13060	CSB-090 13070	CSB-090 13080	CSB-090 13090	CSB-090 130100
135	140								CSB-090 13560	CSB-090 13570	CSB-090 13580	CSB-090 13590	CSB-090 135100
140	145								CSB-090 14060	CSB-090 14070	CSB-090 14080	CSB-090 14090	CSB-090 140100
145	150								CSB-090 14560	CSB-090 14570	CSB-090 14580	CSB-090 14590	CSB-090 145100
150	155								CSB-090 15060	CSB-090 15070	CSB-090 15080	CSB-090 15090	CSB-090 150100
155	160								CSB-090 15560	CSB-090 15570	CSB-090 15580	CSB-090 15590	CSB-090 155100
160	165								CSB-090 16060	CSB-090 16070	CSB-090 16080	CSB-090 16090	CSB-090 160100
165	170								CSB-090 16560	CSB-090 16570	CSB-090 16580	CSB-090 16590	CSB-090 165100
170	175								CSB-090 17060	CSB-090 17070	CSB-090 17080	CSB-090 17090	CSB-090 170100
175	180								CSB-090 17560	CSB-090 17570	CSB-090 17580	CSB-090 17590	CSB-090 175100
180	185	1.4	0.8						CSB-090 18060	CSB-090 18070	CSB-090 18080	CSB-090 18090	CSB-090 180100
185	190								CSB-090 18560	CSB-090 18570	CSB-090 18580	CSB-090 18590	CSB-090 185100
190	195								CSB-090 19060	CSB-090 19070	CSB-090 19080	CSB-090 19090	CSB-090 190100
195	200								CSB-090 19560	CSB-090 19570	CSB-090 19580	CSB-090 19590	CSB-090 195100
200	205								CSB-090 20060	CSB-090 20070	CSB-090 20080	CSB-090 20090	CSB-090 200100
205	210								CSB-090 20560	CSB-090 20570	CSB-090 20580	CSB-090 20590	CSB-090 205100
215	220								CSB-090 21560	CSB-090 21570	CSB-090 21580	CSB-090 21590	CSB-090 215100
225	230								CSB-090 22560	CSB-090 22570	CSB-090 22580	CSB-090 22590	CSB-090 225100
230	235								CSB-090 23060	CSB-090 23070	CSB-090 23080	CSB-090 23090	CSB-090 230100
240	245								CSB-090 24060	CSB-090 24070	CSB-090 24080	CSB-090 24090	CSB-090 240100
250	255								CSB-090 25060	CSB-090 25070	CSB-090 25080	CSB-090 25090	CSB-090 250100
260	265								CSB-090 26060	CSB-090 26070	CSB-090 26080	CSB-090 26090	CSB-090 260100
270	275								CSB-090 27060	CSB-090 27070	CSB-090 27080	CSB-090 27090	CSB-090 270100
280	285								CSB-090 28060	CSB-090 28070	CSB-090 28080	CSB-090 28090	CSB-090 280100
290	295								CSB-090 29060	CSB-090 29070	CSB-090 29080	CSB-090 29090	CSB-090 290100
300	305								CSB-090 30060	CSB-090 30070	CSB-090 30080	CSB-090 30090	CSB-090 300100

CSB-B90(FBB090) Metric flange bushes split q_2 min. 0.3 R0.5~2 25°±5° Detail X Unit:mm d₁ d_a f_1 40 35 50 80 90 15 20 25 30 60 70 CSB-B90 25200 CSB-B90 25150 8.0 0.4 25250 CSB-B90 CSB-B90 30 34 45 CSB-B90 CSB-B90 | CSB-B90 CSB-B90 35 39 50 1.0 0.6 35250 CSB-B90 40300 44 55 40400 40350 CSB-B90 CSB-B90 CSB-B90 CSB-B90 45300 45350 45400 45500 45 50 60 CSB-B90 50300 CSB-B90 CSB-B90 CSB-B90 65 CSB-B90 55400 CSB-B90 55350 CSB-B90 60300 CSB-B90 60500 CSB-B90 60 65 75 1.2 0.8 CSB-B90 CSB-B90 CSB-B90 CSB-B90 CSB-B90 65 70 80 65350 CSB-B90 70500 CSB-B90 70600 CSB-B90 70700 75 70350 70400 CSB-B90 75350 CSB-B90 75400 CSB-B90 75500 75 80 90 CSB-B90 CSB-B90 80 85 100 80500 80700 CSB-B90 90600 CSB-B90 90700 CSB-B90 90900 CSB-B90 CSB-B90 90500 90800 100 105 120 CSB-B90 CSB-B90 CSB-B90 110600 CSB-B90 110 115 130 CSB-B90 120600 CSB-B90 120800 CSB-B90 120900 120 125 140 CSB-B90 130700 CSB-B90 130800 130 135 155 CSB-B90 140600 CSB-B90 140700 CSB-B90 140800 140 145 165 CSB-B90 150600 CSB-B90 150800 CSB-B90 150700 CSB-B90 160600 160 165 190 1.4 0.8 CSB-B90 CSB-B90 170800 170 175 200 CSB-B90 180600 CSB-B90 180700 CSB-B90 180800 CSB-B90 180900 180 185 215 CSB-B90 190600 190 195 225 CSB-B90 200600 CSB-B90 200 205 235 CSB-B90 225800 CSB-B90 225900 230 225700 225600 250 255 290 CSB-B90 CSB-B90 265 270 305 CSB-B90 285700 285 290 325 CSB-B90 CSB-B90 CSB-B90 300600 300700 300800 300 305 340

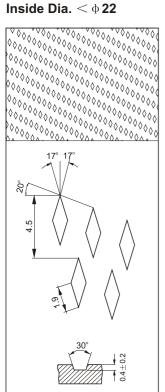
CSB-090(FB090) Bronze wrapped bushes

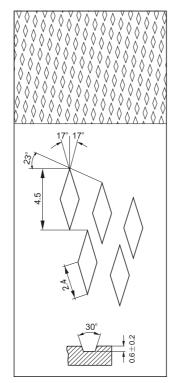
Chemical composition

Material type	Cu%	Sn%	P%	Pb%	Zn%
CSB-090	91.3	8.5	0.2	1	1

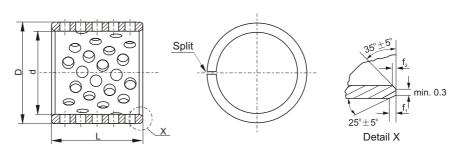

Bushes tolerance

Unit:mm


I.D.	10 <d≤18< th=""><th>18<d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<></th></d≤18<>	18 <d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<>	30 <d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<>	50 <d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<>	80 <d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<>	120 <d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<>	180 <d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<>	250 <d≤300< th=""></d≤300<>
O.D. tolerance	+0.065 +0.030	+0.075 +0.035	+0.085 +0.045	+0.100 +0.055	+0.120 +0.070	+0.170 +0.100	+0.210 +0.130	+0.260 +0.170
Installed I.D.H9	+0.043	+0.052	+0.062	+0.074 0	+0.087 0	+0.100 0	+0.115 0	+0.130 0
Housing: F	J7							


Oil pocket type

Inside Dia. $< \phi$ 22


Inside Dia. $\geqslant \phi$ 22

CSB-T90(FT090) Metric cylindrical bushes

- 1	In	ııt.	m	n
٠.	<i>)</i>	IJι.		

d	D	f,	f_2							L _{-0.40}						
u		'1		10	15	20	25	30	35	40	50	60	70	80	90	100
10	12			CSB-T90 1010	CSB-T90 1015	CSB-T90 1020										
12	14			CSB-T90 1210	CSB-T90 1215	CSB-T90 1220										
14	16	0.5	0.0	CSB-T90 1410	CSB-T90 1415	CSB-T90 1420	CSB-T90 1425									
15	17	0.5	0.3	CSB-T90 1510	CSB-T90 1515	CSB-T90 1520	CSB-T90 1525									
16	18			CSB-T90 1610	CSB-T90 1615	CSB-T90 1620	CSB-T90 1625									
18	20			CSB-T90 1810	CSB-T90 1815	CSB-T90 1820	CSB-T90 1825									
20	23			CSB-T90 2010	CSB-T90 2015	CSB-T90 2020	CSB-T90 2025									
22	25			CSB-T90 2210	CSB-T90 2215	CSB-T90 2220	CSB-T90 2225	CSB-T90 2230								
24	27	0.8	0.4		CSB-T90 2415	CSB-T90 2420	CSB-T90 2425	CSB-T90 2430								
25	28				CSB-T90 2515	CSB-T90 2520	CSB-T90 2525	CSB-T90 2530								
28	31				CSB-T90 2815	CSB-T90 2820	CSB-T90 2825	CSB-T90 2830								
30	34				CSB-T90 3015	CSB-T90 3020	CSB-T90 3025	CSB-T90 3030	CSB-T90 3035	CSB-T90 3040						
32	36	4.0	0.0		CSB-T90 3215	CSB-T90 3220	CSB-T90 3225	CSB-T90 3230	CSB-T90 3235	CSB-T90 3240						
35	39	1.0	0.6		CSB-T90 3515	CSB-T90 3520	CSB-T90 3525	CSB-T90 3530	CSB-T90 3535	CSB-T90 3540						
40	44					CSB-T90 4020	CSB-T90 4025	CSB-T90 4030	CSB-T90 4035	CSB-T90 4040	CSB-T90 4050					
45	50					CSB-T90 4520	CSB-T90 4525	CSB-T90 4530	CSB-T90 4535	CSB-T90 4540	CSB-T90 4550					
50	55					CSB-T90 5020	CSB-T90 5025	CSB-T90 5030	CSB-T90 5035	CSB-T90 5040	CSB-T90 5050	CSB-T90 5060				
55	60					CSB-T90 5520	CSB-T90 5525	CSB-T90 5530	CSB-T90 5535	CSB-T90 5540	CSB-T90 5550	CSB-T90 5560				
60	65	1.2	0.8				CSB-T90 6025	CSB-T90 6030	CSB-T90 6035	CSB-T90 6040	CSB-T90 6050	CSB-T90 6060	CSB-T90 6070			
65	70							CSB-T90 6530	CSB-T90 6535	CSB-T90 6540	CSB-T90 6550	CSB-T90 6560	CSB-T90 6570			
70	75							CSB-T90 7030	CSB-T90 7035	CSB-T90 7040	CSB-T90 7050	CSB-T90 7060	CSB-T90 7070	CSB-T90 7080		
75	80							CSB-T90 7530	CSB-T90 7535	CSB-T90 7540	CSB-T90 7550	CSB-T90 7560	CSB-T90 7570	CSB-T90 7580		
80	85							CSB-T90 8030	CSB-T90 8035	CSB-T90 8040	CSB-T90 8050	CSB-T90 8060	CSB-T90 8070	CSB-T90 8080		
85	90							CSB-T90 8530	CSB-T90 8535	CSB-T90 8540	CSB-T90 8550	CSB-T90 8560	CSB-T90 8570	CSB-T90 8580	CSB-T90 8590	
90	95							CSB-T90 9030	CSB-T90 9035	CSB-T90 9040	CSB-T90 9050	CSB-T90 9060	CSB-T90 9070	CSB-T90 9080	CSB-T90 9090	
95	100	1.4	0.8							CSB-T90 9540	9550	9560	9570	CSB-T90 9580	9590	95100
100	105													CSB-T90 10080		
105	110										CSB-T90 10550	CSB-T90 10560	CSB-T90 10570	CSB-T90 10580	CSB-T90 10590	CSB-T90 105100
110	115										CSB-T90 11050	CSB-T90 11060	CSB-T90 11070	CSB-T90 11080	CSB-T90 11090	CSB-T90 110100

CSB-T90(FT090) Metric cylindrical bushes

													Unit:mm
d	D	f₁	f ₂					L.	0 0.40				
ď		'1	'2	25	30	35	40	50	60	70	80	90	100
115	120							CSB-T90 11550	CSB-T90 11560	CSB-T90 11570	CSB-T90 11580	CSB-T90 11590	CSB-T90 115100
120	125								CSB-T90 12060	CSB-T90 12070	CSB-T90 12080	CSB-T90 12090	CSB-T90 120100
125	130								CSB-T90 12560	CSB-T90 12570	CSB-T90 12580	CSB-T90 12590	CSB-T90 125100
130	135								CSB-T90 13060	CSB-T90 13070	CSB-T90 13080	CSB-T90 13090	CSB-T90 130100
135	140								CSB-T90 13560	CSB-T90 13570	CSB-T90 13580	CSB-T90 13590	CSB-T90 135100
140	145								CSB-T90 14060	CSB-T90 14070	CSB-T90 14080	CSB-T90 14090	CSB-T90 140100
145	150								CSB-T90 14560	CSB-T90 14570	CSB-T90 14580	CSB-T90 14590	CSB-T90 145100
150	155								CSB-T90 15060	CSB-T90 15070	CSB-T90 15080	CSB-T90 15090	CSB-T90 150100
155	160								CSB-T90 15560	CSB-T90 15570	CSB-T90 15580	CSB-T90 15590	CSB-T90 155100
160	165								CSB-T90 16060	CSB-T90 16070	CSB-T90 16080	CSB-T90 16090	CSB-T90 160100
165	170								CSB-T90 16560	CSB-T90 16570	CSB-T90 16580	CSB-T90 16590	CSB-T90 165100
170	175								CSB-T90 17060	CSB-T90 17070	CSB-T90 17080	CSB-T90 17090	CSB-T90 170100
175	180								CSB-T90 17560	CSB-T90 17570	CSB-T90 17580	CSB-T90 17590	CSB-T90 175100
180	185	1.4	0.8						CSB-T90 18060	CSB-T90 18070	CSB-T90 18080	CSB-T90 18090	CSB-T90 180100
185	190								CSB-T90 18560	CSB-T90 18570	CSB-T90 18580	CSB-T90 18590	CSB-T90 185100
190	195								CSB-T90 19060	CSB-T90 19070	CSB-T90 19080	CSB-T90 19090	CSB-T90 190100
195	200								CSB-T90 19560	CSB-T90 19570	CSB-T90 19580	CSB-T90 19590	CSB-T90 195100
200	205								CSB-T90 20060	CSB-T90 20070	CSB-T90 20080	CSB-T90 20090	CSB-T90 200100
205	210								CSB-T90 20560	CSB-T90 20570	CSB-T90 20580	CSB-T90 20590	CSB-T90 205100
215	220								CSB-T90 21560	CSB-T90 21570	CSB-T90 21580	CSB-T90 21590	CSB-T90 215100
225	230								CSB-T90 22560	CSB-T90 22570	CSB-T90 22580	CSB-T90 22590	CSB-T90 225100
230	235								CSB-T90 23060	CSB-T90 23070	CSB-T90 23080	CSB-T90 23090	CSB-T90 230100
240	245								CSB-T90 24060	CSB-T90 24070	CSB-T90 24080	CSB-T90 24090	CSB-T90 240100
250	255								CSB-T90 25060	CSB-T90 25070	CSB-T90 25080	CSB-T90 25090	CSB-T90 250100
260	265								CSB-T90 26060	CSB-T90 26070	CSB-T90 26080	CSB-T90 26090	CSB-T90 260100
270	275								CSB-T90 27060	CSB-T90 27070	CSB-T90 27080	CSB-T90 27090	CSB-T90 270100
280	285								CSB-T90 28060	CSB-T90 28070	CSB-T90 28080	CSB-T90 28090	CSB-T90 280100
290	295								CSB-T90 29060	CSB-T90 29070	CSB-T90 29080	CSB-T90 29090	CSB-T90 290100
300	305								CSB-T90 30060	CSB-T90 30070	CSB-T90 30080	CSB-T90 30090	CSB-T90 300100

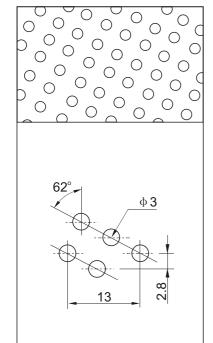
CSB-TB90(FTB090) Metric flange bushes

										1 0					nitimm
d ₁	d_2	d ₃	f,	f ₂						└ -0.40					
		J			15	20	25	30	35	40	50	60	70	80	90
25	28	35	0.8	0.4	25150	CSB-TB90 25200	25250								
30	34	45				CSB-TB90 30200	CSB-TB90 30250	CSB-TB90 30300							
35	39	50	1.0	0.6		CSB-TB90 35200	CSB-TB90 35250	CSB-TB90 35300	CSB-TB90 35350						
40	44	55					CSB-TB90 40250	CSB-TB90 40300	CSB-TB90 40350	CSB-TB90 40400					
45	50	60						CSB-TB90 45300	CSB-TB90 45350	CSB-TB90 45400	CSB-TB90 45500				
50	55	65						CSB-TB90 50300	CSB-TB90 50350	CSB-TB90 50400	CSB-TB90 50500				
55	60	70						CSB-TB90 55300	CSB-TB90 55350	CSB-TB90 55400	CSB-TB90 55500				
60	65	75	1.2	0.8				CSB-TB90 60300	CSB-TB90 60350	CSB-TB90 60400	CSB-TB90 60500	CSB-TB90 60600			
65	70	80						CSB-TB90 65300	CSB-TB90 65350	CSB-TB90 65400	CSB-TB90 65500	CSB-TB90 65600			
70	75	85							CSB-TB90 70350	CSB-TB90 70400	CSB-TB90 70500	CSB-TB90 70600	CSB-TB90 70700		
75	80	90							CSB-TB90 75350	CSB-TB90 75400	CSB-TB90 75500	CSB-TB90 75600	CSB-TB90 75700		
80	85	100							CSB-TB90 80350	CSB-TB90 80400	CSB-TB90 80500	CSB-TB90 80600	CSB-TB90 80700	CSB-TB90 80800	
90	95	110									CSB-TB90 90500	CSB-TB90 90600	CSB-TB90 90700	CSB-TB90 90800	CSB-TB90 90900
100	105	120									CSB-TB90 100500	CSB-TB90 100600	CSB-TB90 100700	CSB-TB90 100800	CSB-TB90 100900
110	115	130									CSB-TB90 110500	CSB-TB90 110600	CSB-TB90 110700	CSB-TB90 110800	CSB-TB90 110900
120	125	140									CSB-TB90 120500	CSB-TB90 120600	CSB-TB90 120700	CSB-TB90 120800	CSB-TB90 120900
130	135	155										CSB-TB90 130600	CSB-TB90 130700	CSB-TB90 130800	CSB-TB90 130900
140	145	165										CSB-TB90 140600	CSB-TB90 140700		
150	155	180										CSB-TB90 150600	CSB-TB90 150700		
160	165	190	1.4	0.8									CSB-TB90 160700		
170	175	200											CSB-TB90 170700		
180	185	215											CSB-TB90 180700		
190	195	225											CSB-TB90 190700		
200	205	235											CSB-TB90 200700		
225	230	260											CSB-TB90 225700		
250	255	290											CSB-TB90 250700		
265	270	305											CSB-TB90 265700		
285	290	325											CSB-TB90 285700		
300	305	340											CSB-TB90		

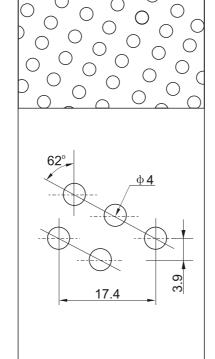
CSB-T90(FT090) Bronze wrapped bushes

Chemical composition

Material type	Cu%	Sn%	P%	Pb%	Zn%
CSB-T09	91.3	8.5	0.2	1	1


Bushes tolerance

Unit:mm

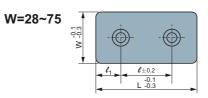

I.D.	10 <d≤18< th=""><th>18<d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<></th></d≤18<>	18 <d≤30< th=""><th>30<d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<></th></d≤30<>	30 <d≤50< th=""><th>50<d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<></th></d≤50<>	50 <d≤80< th=""><th>80<d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<></th></d≤80<>	80 <d≤120< th=""><th>120<d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<></th></d≤120<>	120 <d≤180< th=""><th>180<d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<></th></d≤180<>	180 <d≤250< th=""><th>250<d≤300< th=""></d≤300<></th></d≤250<>	250 <d≤300< th=""></d≤300<>
O.D. tolerance	+0.065 +0.030	+0.075 +0.035	+0.085 +0.045	+0.100 +0.055	+0.120 +0.070	+0.170 +0.100	+0.210 +0.130	+0.260 +0.170
Installed I.D.H9	+0.043	+0.052	+0.062	+0.074	+0.087 0	+0.100 0	+0.115 0	+0.130 0
Housing: H	 17							

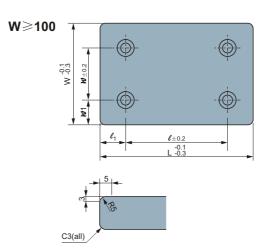
Oil hole type

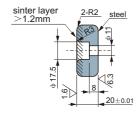
Inside Dia.≤ **425**

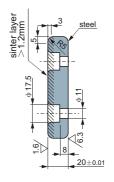
Inside Dia. ≥ 4 28

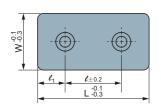
CSB850S Metric cylindrical bushes 1.6 dF7 H7 48 R1~3 R1~3 3.2/ Sinter layer Shaft >1mm Steel backing Sliding direction Unit:mm dF7 Dm₆ 8 10 12 15 16 20 25 30 35 40 50 60 70 80 850SB 850SB 850SB 850SB 12 081208 081210 081212 081215 +0.028 850SB 850SB 850SB 850SB 850SB 10 14 101408 101410 101412 101415 101420 850SB 850SB 850SB 12 18 121810 121812 121815 121816 121820 121825 121830 850SB 850SB 850SB 19 131910 131915 131916 850SB | 850SB 850SB 850SB 850SB 850SB 14 20 142010 142012 142015 142020 142025 142030 +0.034 +0.016 850SB 850SB 850SB 850SB 850SB 850SB 15 21 152110 152112 152115 152116 152120 152125 152130 +0.021 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB 22 162210 162212 162215 162216 162220 162225 162230 162235 162240 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB 18 24 182412 182415 182416 182420 182425 182430 182435 182440 850SB 850SB 850SB 850SB 850SB 850SB 20 28 202812 202815 202816 202820 202825 202830 202835 202840 202850 850SB 850SB 850SB 850SB 32 +0.041 850SB 25 33 253312 253315 253316 253320 253325 253330 253335 253340 253350 253360 850SB 850SB 850SB 850SB 850SB 850SB 850SB 850SB +0.025 +0.009 30 38 303812 303815 303820 303825 303830 303835 303840 303850 303860 850SB 850SB 850SB 850SB 850SB 850SB 850SB 354520 354525 354530 354540 354550 354560 354535 850SB 850SB 850SB 850SB 850SB 850SB 40 50 405020 405025 405030 405035 405040 405050 405060 405070 405080 +0.050 +0.025 850SB 850SB 850SB 850SB 850SB 45 455530 455535 455540 455550 455560 +0.030 +0.011 850SB 850SB 850SB 850SB 850SB 850SB 850SB 50 506035 506040 506050 506060 506070 506080

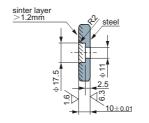



CSB850S Metric cylindrical bushes

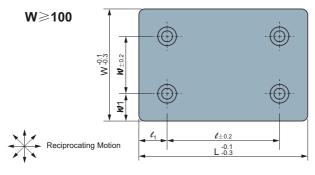

												Unit.mini																										
dl	F7	Dr	m6					L ^{-0.10} -0.30																														
				30	35	40	50	60	70	80	100	120																										
50	+0.050	62		850SB 506230	850SB 506235	850SB 506240	850SB 506250	850SB 506260	850SB 506270																													
50	+0.025	65		850SB 506530		850SB 506540	850SB 506550	850SB 506560	850SB 506570	850SB 506580	850SB 5065100																											
55		70				850SB 557040	850SB 557050	850SB 557060	850SB 557070																													
60		74	+0.030 +0.011	850SB 607430	850SB 607435	850SB 607440	850SB 607450	850SB 607460	850SB 607470	850SB 607480																												
60		75		850SB 607530	850SB 607535	850SB 607540	850SB 607550	850SB 607560	850SB 607570	850SB 607580	850SB 6075100																											
63		75						850SB 637560	850SB 637570	850SB 637580																												
65		80					850SB 658050	850SB 658060	850SB 658070	850SB 658080																												
70	+0.060 +0.030	85			850SB 708535	850SB 708540	850SB 708550	850SB 708560	850SB 708570	850SB 708580	850SB 7085100																											
70		90					850SB 709050	850SB 709060	850SB 709070	850SB 709080																												
75		90						850SB 759060	850SB 759070	850SB 759080	850SB 7590100																											
75		95	+0.035					850SB 759560	850SB 759570	850SB 759580	850SB 7595100																											
80		96	+0.035 +0.013							+0.013						+0.013						+0.013	+0.013	+0.013								850SB 809640	850SB 809650	850SB 809660	850SB 809670	850SB 809680	850SB 8096100	850SB 8096120
80		100				850SB 8010040	850SB 8010050	850SB 8010060	850SB 8010070	850SB 8010080	850SB 80100100	850SB 80100120																										
90	+0.071	110		850SB 9011030			850SB 9011050	850SB 9011060	850SB 9011070	850SB 9011080	850SB 90110100	850SB 90110120																										
100	+0.036	120						850SB 10012060	850SB 10012070	850SB 10012080	850SB 100120100	850SB 100120120																										

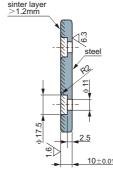

CSB850S JSOX wear plate

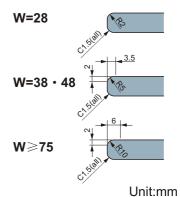

Stanard No.	W	L	w	w ₁	e	ℓ_1	
		75			45	15	
	28	100			50	25	
		150			100		
		75			45	15	
	38	100			50	25	
		150			100		
		75			45	25	
	40	100	_	_	50		
	48	125			75	50	
		150	_		100		
		200 75					
		100			25 50		
	75	125				75	
	/5	150			100		
JSOX		200			150	25	
300X		100			50	20	
		125			75		
		150			100		
	100	200	50	25	150		
		250					
		300			200	50	
		150			100		
	125	200	50	37.5	150	25	
	123	250	30	37.3	200		
		300				50	
		150			100		
	150	200	100	25	150	25	
		250			200		

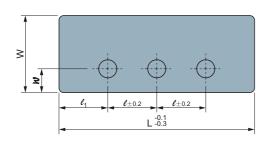


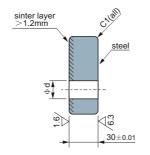
CSB850S JTWX wear plate


JTWX



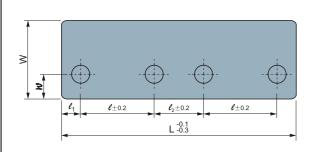


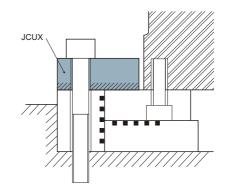



Standard No.	W	L	w	w ₁	e	ℓ_1
		75			45	15
	28	100			50	
	20	125			75	25
		150			100	
		75			45	15
	38	100			50	
	30	125			75	25
		150			100	
		75	_	_	45	15
		100			50	
	48	125			75	25
		150			100	
		200				50
		75			25	
		100			50	
JTWX	75	125			75	
		150			100	
		200			150	25
		100			50	
		125			75	
	100	150	50	25	100	
	100	200		20	150	
		250			200	
		300				50
		125	75		75	
		150			100	25
	125	200	50	37.5	150	
		250		0,.0	200	
		300				50
		150			100	
	150	200	100	25	150	25
		250			200	

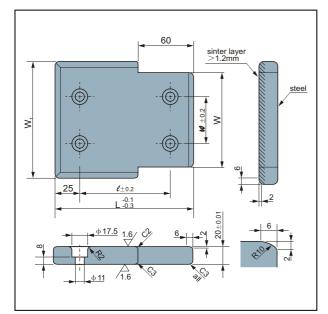
CSB850S JCUX wear plate

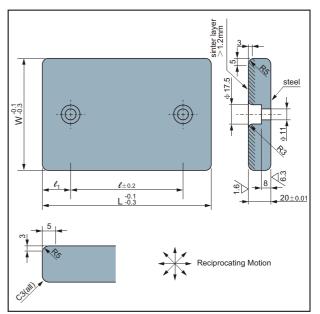
JCUX


L=150 · 200



L=250




Unit:mm

Standard No.	W	L	e	ℓ_1	ℓ_2	w	d
		150	50		_		
JCUX	82	200	75	25	_	25	18
		250	75		50		

CSB850S JPRX/JOXT wear plate

JPRX

JOXT

Unit:mm

Standard No.	W	L	W ₁	w	e
		100			50
		125			75
	74	150	100	40	100
		200			150
JPRX		250			200
JFKA		150			100
	99	200	125	50	150
		250			200
	124	150	150	90	100
	124	200	130	90	150

Standard No.	W	L	e	ℓ_1
		100	50	
		125	75	
	400	150	100	25
	100	200	150	
		250	200	
		300	200	50
JOXT		125	75	
30/1		150	100	25
	125	200	150	25
		250	200	
		300	200	50
		150	100	
	150	200	150	25
		250	200	

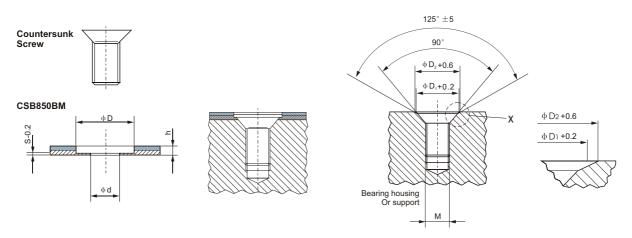
CSB850BM Metric cylindrical bushes d Split Detail X Unit:mm L 0 -0.40 0.6 0.3 0.6 0.4 1.2 0.4 1.8 0.6 1.8 0.6

CSB850BM Metric cylindrical bushes

													Unit:mm
d	D	f ₁	f ₂					L.	0 0.40				
		'1	'2	25	30	35	40	50	60	70	80	90	100
115	120							11550	11560	11570	11580	11590	115100
120	125								12060	12070	12080	12090	120100
125	130								12560	12570	12580	12590	125100
130	135								13060	13070	13080	13090	130100
135	140								13560	13570	13580	13590	135100
140	145								14060	14070	14080	14090	140100
145	150								14560	14570	14580	14590	145100
150	155								15060	15070	15080	15090	150100
155	160								15560	15570	15580	15590	155100
160	165								16060	16070	16080	16090	160100
165	170								16560	16570	16580	16590	165100
170	175								17060	17070	17080	17090	170100
175	180								17560	17570	17580	17590	175100
180	185	1.4	0.8						18060	18070	18080	18090	180100
185	190								18560	18570	18580	18590	185100
190	195								19060	19070	19080	19090	190100
195	200								19560	19570	19580	19590	195100
200	205								20060	20070	20080	20090	200100
205	210								20560	20570	20580	20590	205100
215	220								21560	21570	21580	21590	215100
225	230								22560	22570	22580	22590	225100
230	235								23060	23070	23080	23090	230100
240	245								24060	24070	24080	24090	240100
250	255								25060	25070	25080	25090	250100
260	265								26060	26070	26080	26090	260100
270	275								27060	27070	27080	27090	270100
280	285								28060	28070	28080	28090	280100
290	295								29060	29070	29080	29090	290100
300	305								30060	30070	30080	30090	300100

CSB850BM Metric cylindrical bushes

Unit:mm

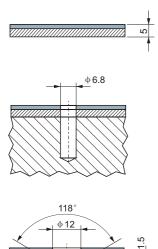

Bushes	toleran	се													
I.D.	I.D. 10 <d\le 120="" 120<d\le="" 18="" 180="" 180<d\le="" 18<d\le="" 250="" 250<d\le="" 30="" 300<="" 30<d\le="" 50="" 50<d\le="" 80="" 80<d\le="" th="" =""></d\le>														
O.D. tolerance	+0.065 +0.030	+0.075 +0.035	+0.085 +0.045	+0.100 +0.055	+0.120 +0.070	+0.170 +0.100	+0.210 +0.130	+0.260 +0.170							
Installed I.D.H9	+0.043 0	+0.052 0	+0.062 0	+0.074 0	+0.087 0	+0.100 0	+0.115 0	+0.130 0							
Housing: H	Housing: H7														

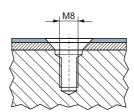
Metric standard strip

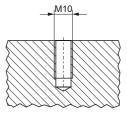
Unit:mm

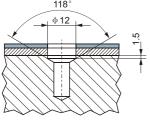
Thickness -0.05	Lining layer thickness	Length±1	Thickness -0.05
1.0	≥0.40	500	150
1.5	≥0.50	500	150
2.0	≥0.70	500	150
2.5	≥0.75	500	150
3.0	≥1.00	500	150
5.0	≥1.50	500	150

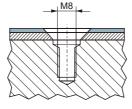
CSB850BM Strip 2, 2.5 and 3 mm thick

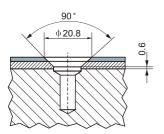

CSB850BM Metric cylindrical bushes

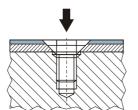

Unit:mm

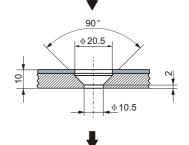

Thread to DIN 13	d	D	D ₁	D_2	h	BM 10	BM 11	Hole spacing tolerance
M5	5.3	11	9.5	10.5	2	0.0		
M6	6.4	13	11.5	12.5	2/2.5	0.8	0.8	±0.1
M8	8.4	17	15	16	2.5/3	3	0.0	
M10	10.5	21	18.5	19.5	3	3		±0.15

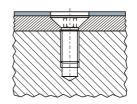

CSB850BM Strip 5 mm thick

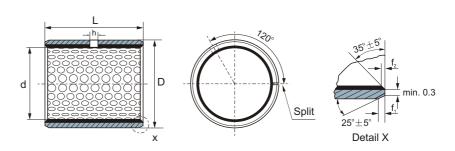

CSB850BM Strip 10 mm thick





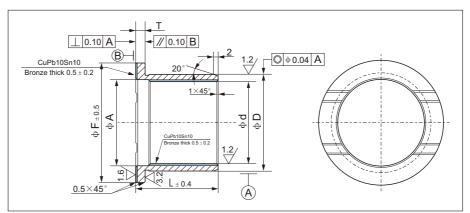






CSB-800 Metric cylindrical bushes

d	D		Housing	Installed bearing		'all ness	Oil	f ₁	f ₂				L.	0 0.40			
		h8	H7	d	min	max	hole			10	15	20	25	30	40	50	60
10	12	10 -0.022								1010	1015	1020					
12	14	12 -0.027	14 +0.018					0.5	0.3	1210	1215	1220					
14	16	14 -0.027	16 +0.018	+0.148 +0.010	0.995	0.935	.935	0.5	0.0	1410	1415	1420					
15	17	15 _{-0.027}	17 +0.018				4			1510	1515	1520					
16	18	16 _{-0.027}	18 +0.018						.8 0.4	1610	1615	1620					
18	20	18 _{-0.027}	20 +0.021	+0.151 +0.010				0.8		1810	1815	1820	1825				
20	23	20 _{-0.033}	23 +0.021		1.490			8.0		2010	2015	2020	2025				
22	25	22 _{-0.033}	25 +0.021	+0.181		1 120	1.430			2210	2215	2220	2225				
24	27	24 -0.033	27 +0.021	+0.020		1.430				2410	2415	2420	2425	2430			
25	28	25 -0.033	28 +0.021					1.0	0.5		2515	2520	2525	2530			
26	30	26 _{-0.033}	30 +0.021				6	1.0	0.5		2615	2620	2625	2630			
28	32	28 _{-0.033}	32 +0.025				0				2815	2820	2825	2830	2840		
30	34	30 _{-0.033}	34 +0.025								3015	3020	3025	3030	3040		
32	36	32 _{-0.039}	36 ^{+0.025}	+0.205 +0.030	1.980	1.920					3215	3220	3225	3230	3240		
35	39	35 _{-0.039}	39 +0.025					1.2	0.6			3520	3525	3530	3540	3550	
38	42		42 +0.025				8					3820	3825	3830	3840	3850	
40	44	40 _{-0.039}	44 +0.025				0					4020	4025	4030	4040	4050	



CSB-800 Metric cylindrical bushes

																UI	nit:mm		
d	D	Axle	Housing	bearing	W thick	all ness	Oil	f ₁	f ₂				L _{-0.40}	0					
		h8	H7	d	min	max	hole			25	30	40	50	60	80	90	100		
45	50	45 -0.039	50 ^{+0.025}	+0.205 +0.030						4525	4530	4540	4550						
50	55	50 -0.039									5030	5040	5050	5060					
55	60	55 -0.046					0				5530	5540	5550	5560					
60	65	60 -0.046		+0.210			8				6030	6040	6050	6060					
65	70	65 -0.046		+0.030							6530	6540	6550	6560					
70	75	70 -0.046	TU U3U								7030	7040	7050	7060	7080				
75	80	75 -0.046	+0.030			2.400					7530	7540	7550	7560					
80	85	80 -0.046	. 0 005									8040	8050	8060	8080				
85	90	85 -0.054	±0.035								8530		8550	8560	8580		85100		
90	95	90 -0.054	95 ^{+0.035}		2.460			1.5	1.0				9050	9060	9080		90100		
95	100	95 -0.054	100+0.035												9560	9580	9590	95100	
100	105	-0.034												10060	10080	10090	100100		
105	110	105 _{-0.054}	110 ^{+0.035}											10560	10580		105100		
110	115	110 _{-0.054}					9.5							11060	11080		110100		
115	120	0.00.											11550		11580				
120	125		125 +0.040										12050	12060			120100		
125	130	125 _{-0.063}	130 +0.040														125100		
130	135	-0.063	135 +0.040	+0.220 +0.030										13060			130100		
135	140	135 _{-0.063}												13560	13580				
140		-0.003															14060	14080	
150	155	1500.063	+0.040 155											15060	15080		150100		

MJF-800 Welding flange type bushes

Unit:mm

Туре	e A (Grindi	ng te	chnic	al								
ΦF	φD	t7	φ d	D8	L ± 0.4	T± 0.5	φF	φD	t7	φd	D8	L ± 0.4	T± 0.5
60	46	+0.079	40		39.5	4.5	92.5	77		70.4		70	4.5
67	50	+0.054	44.4		37	4.7	99	77		70		82.5	4.5
63	53		43.4	+0.119	48	5	112	77.25	+0.105 +0.075	70.35	+0.146 +0.100	89.6	4.5
70	57		50	+0.080	45	4.5	93	78		70.4		72	6
70	57	+0.096	50		48	4.5	93	80		70.4		75	8
70	58	+0.066	50		46	7.9	98	82		75.4		74	4.5
92	60.6		54.5		59	4.5	107	82		75.4		80	4.5
85	62		55		51	4.5	97	85		75.4		70	5
95	67		60		67	3.5	97	85		75.4		80	10
87	68		60.2		60	6	120	87.6	+0.126	80		93	3.8
103	70.8		63.7	+0.146	65	4.5	128	90.5	+0.091	82.8		108	4.5
103	70.8	+0.105	63.7	+0.100	73	4.5	129.6	91.2		83.1		107.7	4.5
95	72	+0.075	65		64	3.5	120	92		85.4		82	4.5
95	72		65		72	4.5	128	92.6		85	+0.174 +0.120	103.5	4.5
108	72		65		75	3.5	120	93		85	10.120	94	6
97	72		65		77	3.5	138	97.5		89.3		126.5	4.5
97	77		70		62	4.5	144	105	+0.139	95		127	5

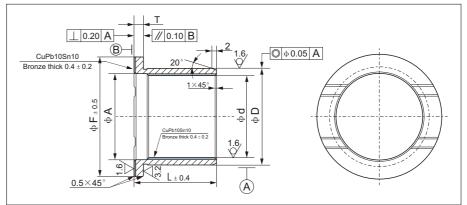
The above mentioned sizes are only for reference, CSB can produce the parts according to the customers drawings.

Grinding type bushe inspection and tolerance recommend

A: Grinding technical type bushes

O.D.: Average data by O.D. Micro-meter

I.D.: Average data by 3-point Micro-meter


Tolerance: OD-t7 ID-D8

Mating tolerance: Housing-H7 shaft-e7/f7

MJF-800 Welding flange type bushes

Unit:mm

Туре	Type B Sizing technical														
φЕ	φD	Φd	Wall th	Wall thick.		T+0.05 -0.15		φЕ	φD	φd	Wall thick.		L ± 0.4	T+0.05 -0.15	
60	41	35.4	2.8		42	3.5		87	72	65.4	3.3		63	4.5	
70	44	40	2		32	4.5		95	72	65	3.5		64	3.5	
53	44	40	2		37	4.5		95	72	65	3.5		72	4.5	
53	44	40	2		40	4.5		108	72	65	3.5		75	3.5	
60	44	40	2		39.5	4.5		97	72	65	3.5		77	3.5	
60	46	40	2		39.5	4.5		97	77	70	3.5		62	4.5	
67	50	44.4	2.8	-0.03 -0.08	37	4.7		99	77	70	3.5	-0.03 -0.08	82.5	4.5	
70	54	50	2		53	4.5		112	77.25	70.35	3.45		89.6	4.5	
70	57	50	3.5		45	4.5		98	79	75	2		74	4.5	
70	57	50	3.5		48	4.5		98	82	75.4	3.3		74	4.5	
92	60.6	54.5	3.05		59	4.5		107	82	75.4	3.3		80	4.5	
85	62	55	3.5		51	4.5		112	89	85	2		74.5	4.5	
95	67	60	3.5		67	3.5		120	92	85.4	3.3		82	4.5	
87	69	65	2		64.5	4.5		125	94	90	2		80	4.5	

The above mentioned sizes are only for reference, CSB can produce the parts according to the customers drawings.

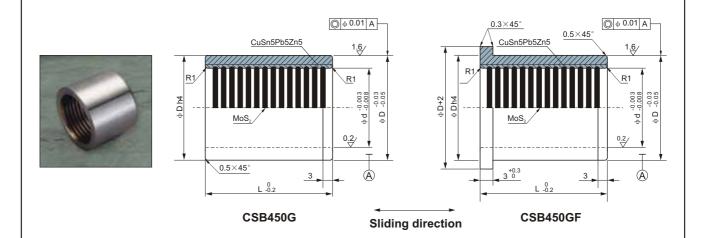
Sizing type bushe inspection and tolerance recommend

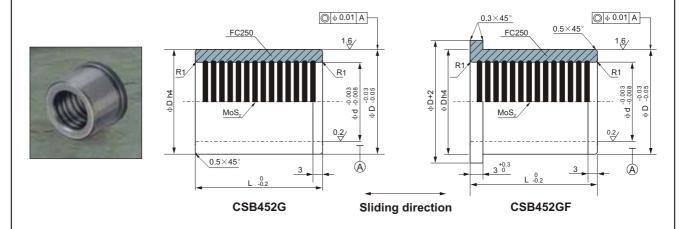
B: Sizing technical type bushes

This type bushes can not be measured directly as the bushe fail to keep round under freedom, we normally recommend check the fitting pressure and wall thickness to control the products.

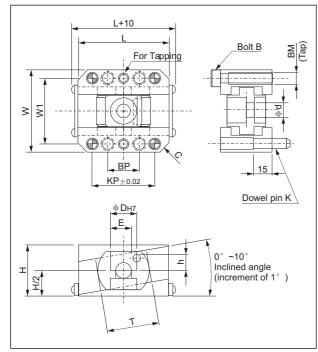
The pressure data = $(3.1416xODxL)x(6-12kg/cm^2)$

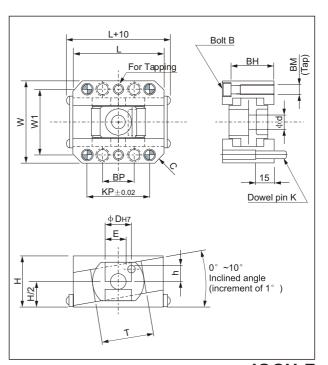
For example: Bushe Φ 90/80x70x70


Theory contact area: 3.1416x8cmx7cm=176cm²
Theory pressure: 176cm²x6kg/cm²=1056kg
Standard wall thickness:-0.03/-0.08mm
Mating tolerance: Housing-H7 Shaft-e7/f7


CSB450 Metric bushes Type: A 18 G .0.5 1×45° [IT6 A 1×45° 0.8/ Sliding direction Type: B 1×45° Order CSB450-18×37×50B ⊕ ⇔ ⇔ G L Type CuSn12 A Material Unit:mm

Туре	d	D	В	С	Е	F	G	L	M	N	Р	Housing	
В				29		8	18 37	31	_	5			
	18-19	28	34				18	50			20.5	28 ^{+0.013}	
А				_	31	_	27 18	70	M6×1	_		20 0	
В				39		12	23 42	36		5			
	24-25	38	44				23	55			25.5	38 ^{+0.016}	
А	24 20	00		_	41	—	32	80	M10×1	_	20.0	30 ₀	
							23 30	43					
В				48		16	47	60	_	5			
	30-32	45	53				26	60			31.5	45 ^{+0.016}	
А				_	50		37 26	90	M10×1	_			
В		54	63	58		19	38	51	_	8			
	40.40					10	54 30	67			20.5	54 ^{+0.019}	
А	40-42	54		_	60	_	47	400	M10×1		36.5	54 0	
							30	100					
В				74	_	19	48 62	61		8			
	50-52	65	79				35	75			44.5	65 ^{+0.019}	
А				_	76	_	57	110	M10×1	—		00 0	
							35 61	74					
В				87		19	77	90		8		. 0. 000	
	63	81	92		00		48	90	14004		51	81 ^{+0.022}	
A					89		67 48	130	M10×1				
В				106		19	78	91		8			
	80	100	111				48	100			60.5	100 ^{+0.022}	
А		. 30			108		77 48	150	M10×1		33.0	100 0	


CSB450G/452G Metric bushes

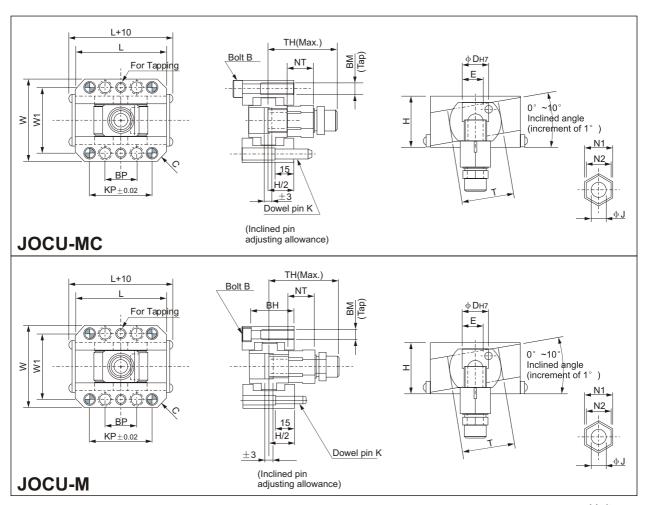


Туре	d	[O h4	L										
	10	16	0 -0.005	10	13	16	20	22	25					
CSB450G	13	20			13	16	20	22	25					
CSB452G	16	24	0 -0.006			16	20	22	25	30	35			
CSB452G	20	28					20	22	25	30	35			
	25	34	0 -0.007				20	22	25	30	35			
	10	16	0 -0.005	10	13	16	20	22	25					
CSB450GF	13	20			13	16	20	22	25					
CSB452GF	16	24	0 -0.006			16	20	22	25	30	35			
CSB452GF	20	28					20	22	25	30	35			
	25	34	0 -0.007				20	22	25	30	35			

JOCU-FC/JOCU-F Oilless unit parts

JOCU-FC

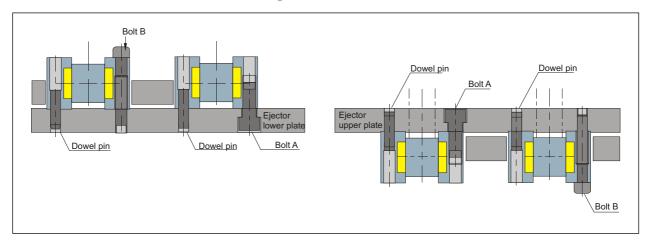
JOCU-F


	• •		
 	н.	m	

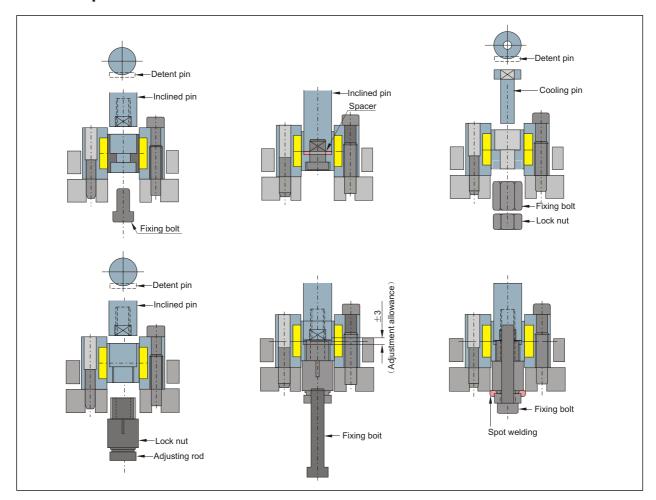
Stanadard No.	D (pin diameter)	W	L	Н	W1	BP	B (Accessory)	KP	k	ВМ	E	h	С	Т	d
	8	41	44	24	33	12	M3×30	25	φ4×25	M4	7.5	6.5	3	25	5
	10	47	50	28	38	16	M4×35	30	ф5×25	M5	8.5	6.5	3	32	6
	12	53	60	36	42	20	M6×50	40	φ6×25	M8	10	8	4	40	7
JOCU-FC	25	75	85	48	62	40	M8×65	65	ф8×30	M10	22	14	8	50	14
	30	81	100	54	68	50	M8×70	80	ф8×30	M10	27	15	8	60	14
	35	100	115	60	80	50	M10×80	85	φ10×30	M12	31	15	8	70	14
	40	108	125	65	88	50	M10×85	85	ф 10×30	M12	36	16	8	80	18

Stanadard No.	D (pin diameter)	W	L	Н	W1	BP	B (Accessory)	KP	k	ВМ	ВН	Е	h	С	Т	d
JOCU-F	16	64	70	40	50	25	M6×45	50	ф6×25	M8	33.5	13	10	6	45	9
	20	76	75	46	60	30	M8×55	55	ф8×30	M10	37.5	17	13	8	45	11
	25	81	85	48	65	40	M8×55	65	ф8×30	M10	39.5	22	14	8	50	14
	30	88	100	54	72	50	M8×60	80	ф8×30	M10	45.5	27	15	8	60	14

JOCU-MC/M Oilless unit parts


Unit:mm

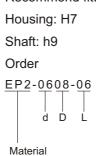
Standard No.	D (pin diameter)	W	L	Н	W1	BP	B (Accessory)	KP	k	ВМ	Е	h	С	Т	TH	N1	N2	NT	J
	25	75	85	48	62	40	M8×65	65	ф8×30	M10	22	14	8	50	64	27	22	21.52	13
JOCU-MC	30	81	100	54	68	50	M8×70	80	ф8×30	M10	27	15	8	60	70	32	27	26	13
JOCO-IVIC	35	100	115	60	80	50	M10×80	85	φ 10×30	M12	31	15	8	70	73	36	32	28	13
	40	108	125	65	88	50	M10×85	85	ф 10×30	M12	36	16	8	80	79.5	41	38	29	17

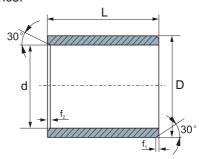

Standard No.	D (pin diameter)	W	L	Н	W1	BP	B (Accesspry)	KP	k	ВМ	ВН	Е	h	С	Т	TH	N1	N2	NT	J
	16	64	70	40	50	25	M6×45	50	φ6×25	M8	33.5	13	10	6	45	53	17	14	21	9
IOCU M	20	76	75	46	60	30	M8×55	55	ф8×30	M10	37.5	17	13	8	45	58	22	19	21	11
JOCU-M	25	81	85	48	65	40	M8×55	65	ф8×30	M10	39.5	22	14	8	50	64	27	22	21.5	13
	30	88	100	54	75	50	M8×60	80	ф8×30	M10	45.5	27	15	8	60	70	32	27	26	13

JOCU Installation

Installation method on molding

Inclined pin Installation method





CSB-EP Metric cylindrical bushes

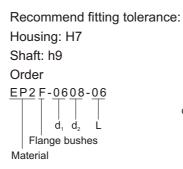
Recommend fitting tolerance:

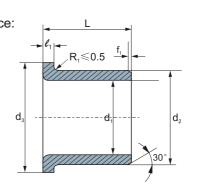
d	f,	f ₂
d≤10	0.5	0.5
10 <d≤30< th=""><th>0.8</th><th>0.5</th></d≤30<>	0.8	0.5
30 <d< th=""><th>1.2</th><th>0.5</th></d<>	1.2	0.5

Unit:mm

Designation	d After fitting	D	L (h13)	Designation	d After fitting	D	L (h13)										
EP-0304-03		3 EP-1214-06			6												
EP-0304-05	3 +0.054 +0.014	4.5	5	EP-1214-08			8										
EP-0304-06			6	EP-1214-10			10										
EP-0405-04	4 +0.068	5.5	4	EP-1214-12	12 ^{+0.102} +0.032	14	12										
EP-0405-06	4 +0.020	5.5	6	EP-1214-15	3.002		15										
EP-0507-05			5	EP-1214-20			20										
EP-0507-08	5 ^{+0.068} _{+0.020}	7	8	EP-1214-25			25										
EP-0507-10			10	EP-1416-15			15										
EP-0608-06			6	EP-1416-20	14 ^{+0.102} +0.032	16	20										
EP-0608-08	6 ^{+0.068} +0.020	8	8	EP-1416-25	5332		25										
EP-0608-10			10	EP-1517-10			10										
EP-0810-06			6	EP-1517-15	15 ^{+0.102} _{+0.032}	17	15										
EP-0810-08			8	EP-1517-20	+0.032	17	20										
EP-0810-10	8 ^{+0.083} +0.025	10	10	EP-1517-25			25										
EP-0810-12			12	EP-1618-12			12										
EP-0810-15			15	EP-1618-15	16 ^{+0.102} _{+0.032}	18	15										
EP-1012-04													4	EP-1618-20	+0.032	10	20
EP-1012-06			6	EP-1618-25			25										
EP-1012-08			8	EP-1820-15	. 0. 400		15										
EP-1012-10	10 +0.083	12	10	EP-1820-20	18 ^{+0.102} +0.032	20	20										
EP-1012-12	+0.025	12	12	EP-1820-25			25										
EP-1012-15			15	EP-2023-15			15										
EP-1012-18			18	EP-2023-20	20 ^{+0.124} +0.040	23	20										
EP-1012-20			20	EP-2023-23			23										

Material: EP,EP1,EP2...EP10


CSB-EP Metric cylindrical bushes


Unit:mm

							Unit:mm
Designation	d After fitting	D	L (h13)	Designation	d After fitting	D	L (h13)
EP-2023-25	20 +0.124	23	25	EP-4550-30	45 +0.150	50	30
EP-2023-30	+0.040	25	30	EP-4550-50	⁴⁵ +0.050	30	50
EP-2225-15			15	EP-5055-20			20
EP-2225-20	₂₂ +0.124	25	20	EP-5055-30	50 +0.150	55	30
EP-2225-25	22 ^{+0.124} +0.040	20	25	EP-5055-40	+0.050		40
EP-2225-30			30	EP-5055-50			50
EP-2528-12			12	EP-5560-40	55 ^{+0.180} +0.060	60	40
EP-2528-15			15	EP-5560-60	+0.060	00	60
EP-2528-20	25 ^{+0.124} +0.040	28	20	EP-6065-40	60 ^{+0.180} +0.060	65	40
EP-2528-25			25	EP-6065-50	+0.060	0.5	50
EP-2528-30			30	EP-6570-50	65 ^{+0.180} _{+0.060}	70	50
EP-2832-20			20	EP-7075-60	70 ^{+0.180} _{+0.060}	75	60
EP-2832-25	28 ^{+0.124} +0.040	32	25	EP-7580-60	75 ^{+0.180} _{+0.060}	80	60
EP-2832-30			30	EP-8085-100	80 ^{+0.180} +0.060	85	100
EP-3034-20			20	EP-8590-100	85 ^{+0.212} +0.072	90	100
EP-3034-25	30 ^{+0.124} +0.040	34	25	EP-9095-100	90 ^{+0.212} +0.072	85	100
EP-3034-30	+0.040	34	30	EP-95100-100	95 ^{+0.212} +0.072	100	100
EP-3034-40			40	EP-100105-100	100 ^{+0.212} +0.072	105	100
EP-3236-20			20	EP-110115-100	110 ^{+0.212} _{+0.072}	115	100
EP-3236-30	32 ^{+0.150} +0.050	36	30	EP-120125-100	120 ^{+0.212} +0.072	125	100
EP-3236-40			40	EP-125130-100	125 ^{+0.245} +0.085	130	100
EP-3539-20			20	EP-130135-100	130 ^{+0.245} +0.085	135	100
EP-3539-25			25	EP-140145-100	140 ^{+0.245} +0.085	145	100
EP-3539-30	35 ^{+0.150} +0.050	39	30	EP-150155-100	150 ^{+0.245} +0.085	155	100
EP-3539-40			40				
EP-3539-50			50				
EP-4044-20			20				
EP-4044-30	40 ^{+0.150} +0.050	11	30				
EP-4044-40	+0.050	44	40				
EP-4044-50			50				

CSB-EPF Metric flange bushes

d	f ₁
d≤10	0.5
10 <d≤30< td=""><td>0.8</td></d≤30<>	0.8
30 <d< td=""><td>1.2</td></d<>	1.2

Unit:mm

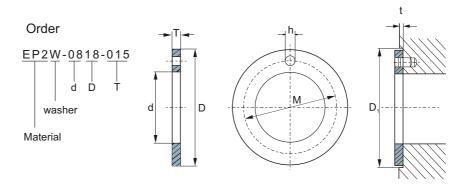
13) ℓ_1 -0.14

Designation	d₁ After fitting	d ₂	d₃(d13)	L(h13)	<i>ℓ</i> ₁ -0.14	Designation	d₁ After fitting	d ₂	d ₃ (d13)	L(h1
EPF-0304-03	2 +0.054	4.5	7.5	3		EPF-1517-09				9
EPF-0304-05	3 _{+0.014}	4.5	7.5	5		EPF-1517-12	4 - +0.102	47	22	12

EPF-0304-03	3 ^{+0.054} +0.014	4.5	7.5	3		EPF-1517-09				9	
EPF-0304-05	3 +0.014	4.5	7.5	5		EPF-1517-12	15 ^{+0.102} _{+0.032}	17	23	12	
EPF-0405-03				3	0.75	EPF-1517-17	+0.032	17	25	17	
EPF-0405-04	4 +0.068 +0.020	5.5	9.5	4		EPF-1517-20				20	1
EPF-0405-06				6		EPF-1618-12	16 ^{+0.102} _{+0.032}	18	24	12	
EPF-0507-04	5 ^{+0.068} _{+0.020}	7	11	4		EPF-1618-17	10 +0.032	10	24	17	
EPF-0507-05	J +0.020	'	11	5		EPF-1820-12				12	
EPF-0608-04				4		EPF-1820-17	18 ^{+0.102} _{+0.032}	20	26	17	
EPF-0608-06	6 +0.068 +0.020	8	12	6		EPF-1820-20				20	
EPF-0608-08	+0.020		12	8		EPF-2023-11				11.5	
EPF-0608-10				10		EPF-2023-16	20 +0.124 +0.040	23	30	16.5	
EPF-0810-05				5.5		EPF-2023-21				21.5	1.5
EPF-0810-07	8 +0.083 +0.025	10	15	7.5		EPF-2528-11				11.5	1.5
EPF-0810-09				9.5		EPF-2528-16	25 ^{+0.124} _{+0.040}	28	35	16.5	
EPF-1012-07				7		EPF-2528-21				21.5	
EPF-1012-09				9		EPF-3034-16				16	
EPF-1012-10	10+0.083	12	18	10		EPF-3034-26	30 +0.124 +0.040	34	42	26	
EPF-1012-12	10+0.025	12	10	12		EPF-3034-37				37	
EPF-1012-15				15		EPF-3236-16	32 ^{+0.150} _{+0.050}	36	40	16	
EPF-1012-17				17	1	EPF-3236-26	3Z +0.050	30	70	26	
EPF-1214-07				7		EPF-3539-16	35 ^{+0.150} _{+0.050}	39	47	16	2
EPF-1214-09				9		EPF-3539-26		- 00	7,	26	
EPF-1214-10				10		EPF-3842-22	38 +0.150 +0.050	42	54	22	
EPF-1214-12	12 ^{+0.102} _{+0.032}	14	20	12		EPF-4044-30	40 +0.150	44	52	30	
EPF-1214-15				15		EPF-4044-40			52	40	
EPF-1214-17				17		EPF-4550-50	45 +0.150 +0.050	50	58	50	
EPF-1214-20				20		EPF-5055-40	50 ^{+0.150} +0.050	55	63	40	
EPF-1416-10				10		EPF-5055-50		33	03	50	
EPF-1416-12	14 ^{+0.102} _{+0.032}	16	22	12		EPF-6065-50	60 +0.180 +0.060	65	73	50	

Material: EP,EP1,EP2...EP10

EPF-1416-17



CSB-EPF Metric flange bushes

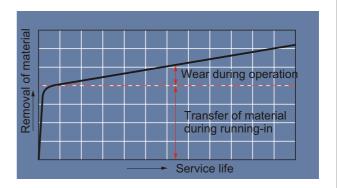
Unit:mm

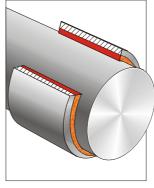
Designation	d₁ After fitting	d ₂	d ₃ (d13)	L(h13)	<i>ℓ</i> ₁-0.14	Designation	d₁ After fitting	d ₂	d ₃ (d13)	L(h13)	ℓ₁-0.14
EPF-6570-50	65 +0.180 +0.060	70	78	50		EPF-100105-100	100 +0.212 +0.072	105	113	100	
EPF-7075-50	70 +0.180 +0.060	75	83	50	2	EPF-110115-100	110 +0.212 +0.072	115	123	100	
EPF-7580-50	75 ^{+0.180} _{+0.060}	80	88	50		EPF-120125-100	120 +0.212 +0.072	125	133	100	
EPF-8085-100	80 +0.180 +0.060	85	93	100		EPF-125130-100	125 +0.245 +0.085	130	138	100	2.5
EPF-8590-100	85 ^{+0.212} _{+0.072}	90	98	100	2.5	EPF-130135-100	130 +0.245 +0.085	135	143	100	
EPF-9095-100	90 +0.212 +0.072	95	103	100	2.5	EPF-140145-100	140 +0.245 +0.085	145	153	100	
EPF-95100-100	95 +0.212 +0.072	100	108	100		EPF-150155-100	150 ^{+0.245} _{+0.085}	155	163	100	

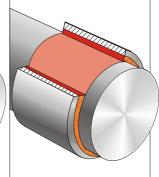
Metric thrust washer

Unit:mm

Designation		Wash	er Dim.		Fitting Dim.				
Designation	d +0.25	D -0.25	T -0.05	$M \pm 0.125$	h +0.1~+0.4	t±0.2	D₁+0.12		
EPW-0818-015	8	18		13			18		
EPW-1018-015	10	18		15	1.5		20		
EPW-1224-015	12	24		18			24		
EPW-1426-015	14	26		20			26		
EPW-1630-015	16	30		23	2		30		
EPW-1832-015	18	32		25			32		
EPW-2036-015	20	36	1.5	28	3	1	36		
EPW-2238-015	22	38		30			38		
EPW-2442-015	24	42		33			42		
EPW-2644-015	26	44		35			44		
EPW-2848-015	28	48		38			48		
EPW-3254-015	32	54		43			54		
EPW-3862-015	38	62		50			62		
EPW-4266-015	42	66		54	4		66		
EPW-4874-020	48	74		61			74		
EPW-5278-020	52	78	2	65		1.5	78		
EPW-6290-020	62	90		76			90		

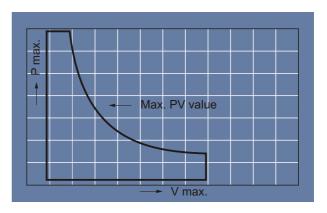

Material: EP,EP1,EP2...EP10


Influences on the service life:


Wear and service life of the CSB slide bearings are dependent on the following:

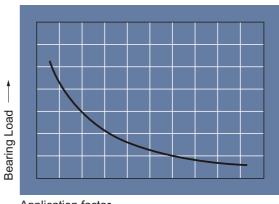
- Specific bearing load
- Sliding speed
- PV value
- Roughness depth of the mating surface
- Mating surface material and
- Temperature etc. and so on

During running-in, some of the surface of the PTFE/Pb or solid lubricants is transferred to the mating surface. A running surface is formed which has low coefficient of friction and this has a positive effect on the operating behaviours. For 3-layer dry bearings, after running-in, some of the porous bronze layer can be seen on the sliding layer as individual areas of different size. This shows that the bearing is functioning correctly.



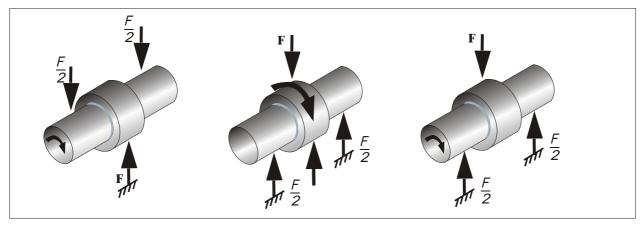
PV value

The PV value has a considerable influence on the bearing service life. It is the product of the specific load P and the sliding speed V and the PV is very important design data, we recommend design lower PV value will leads to a longer service life.

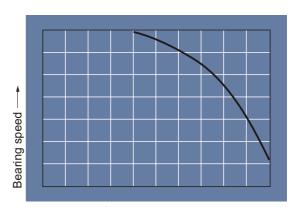

Direction of Motion and PV Value

		Bearing Pressure P N/mm² {kgf/cm²}	Velocity V m/s {m/min}	PV Value N/mm²*m/s {kgf/cm²*m/min}
Rotating motion in single direction of radial journal	Bushing	$ \frac{\frac{F}{dL}}{\frac{10^2F}{dL}} $	$\frac{\frac{\pi \ dn}{10^3}}{\left\{\frac{\pi \ dn}{10^3}\right\}}$	$\frac{\frac{\pi Fn}{10^3L}}{\frac{\pi Fn}{10L}}$
2. Oscillating motion	F Bushing	$ \frac{\frac{F}{dL}}{\left\{\frac{10^2F}{dL}\right\}} $	$\frac{\frac{dc \theta}{10^3}}{\left\{\frac{\pi dc \theta}{180 \times 10^3}\right\}}$	$\frac{\frac{\text{Fc }\theta}{10^{3}\text{L}}}{\left\{\frac{\pi \text{ Fc }\theta}{180\times 10^{2}\text{L}}\right\}}$
3. Reciprocating motion	Bushing	$\frac{\frac{F}{dL}}{\left\{\frac{10^2F}{dL}\right\}}$	$ \frac{2cS}{10^{3}} \\ \frac{2cS}{10^{3}} $	$ \frac{2FcS}{10^{3}dL} $ $ \left\{\frac{FcS}{5dL}\right\} $
4. Thrust motion	Rotation	$\begin{array}{c} \frac{4F}{\pi \left(D^{2}\text{-}d^{2}\right)} \\ \left\{ \frac{400F}{\pi \left(D^{2}\text{-}d^{2}\right)} \right. \end{array} \right\}$	$\frac{\pi \underline{D} \underline{n}}{10^3} \\ \left\{ \frac{\pi \underline{D} \underline{n}}{10^3} \right\}$	$\frac{\frac{4FDn}{10^{3}(D^{2}-d^{2})}}{\left\{\frac{4FDn}{10(D^{2}-d^{2})}\right\}}$
	Oscillation Thrust washer	$\frac{4F}{\pi (D^2 \! - \! d^2)} \\ \left\{ \frac{400F}{\pi (D^2 \! - \! d^2)} \right\}$	$\frac{\frac{\text{Dc }\theta}{10^3}}{\left\{\frac{\pi \text{ Dc }\theta}{180\times 10^3}\right\}}$	$\frac{\frac{4 FDc \; \theta}{10^3 \; \pi \; (D^2 \! - \! d^2)}}{\frac{4 FDc \; \theta}{180 \times 10 (D^2 \! - \! d^2)}} \bigg\}$
5. Plane reciprocating motion	Plate	$ \frac{F}{BL} $ $ \left\{ \frac{10^2 F}{WL} \right\} $	$\frac{\frac{2cS}{10^3}}{\left\{\frac{2cS}{10^3}\right\}}$	$ \frac{2FcS}{10^{3}BL} $ $ \left\{\frac{FcS}{5WL}\right\} $

F	: Vertical load	N {kgf
	: Number of rotation	····· S ⁻¹ {rpm
С	: Cylic velocity of reciprocating	
	or oscillating motion	
S	: Stroke distance	m {mm
	: Oscillating angle	
d	: Bearing ID	mm {mm
	: Bearing OD	
L	: Bearing length	mm {mm
W	: Bearing width	·····mm {mm


Bearing Load

In general, the bearing pressure is obtained by dividing the max. load imposed on the bearing by the pressure supporting area of the bearing. The pressure supporting area is defined as the projected loading area which contacts with the shaft, projected in the direction of the load in cases of a cylindrical and spherical bearings.


Application factor ---

Type of load

Velocity

The main cause of generated heat is the work done at the friction surface of the bearing. It is known from experience that the rise in temperature at the friction surface is affected more by the velocity than by the pressure. With the same PV value, the larger V value is, the high bearing temperature will be. When used in a high velocity operation, it is recommended that the bearings should be designed and used in such a manner that the co-efficient of friction be reduced by positive supply of oil to enhance both cooling and lubricating effectiveness, in order to take advantage of their wear resistance.

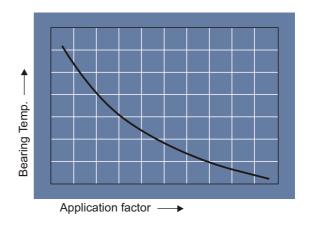
Application factor →

Oscillating Motion

The oscillating motion is considered to be one of the most severe conditions to bearings zero velocity in each cycle of motion. Oil film is liable to be disrupted, fatigue and wear of material be accelerated and wear particles tend to remain longer. The ball bearing which are designed mainly for rotational motion have a very small contact area causing, extreme high contact stress to develop at their pressure supporting areas. They are, thus, unsuitable for oscillating motion because which

have large contact sleeve bearings which have large contact area are generally considered better for this application.

CSB self-lubricating bearings are the most adequate bearings for oscillating motion having a very tough sliding surface which generates little wear particles, and being an oil-containing type which will not cause noise due to disruption of oil film.

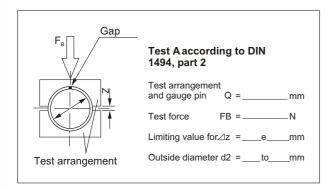

Operation intervals

Operation may either be continuous or intermittent. Intermittent operations can be advantageous for general type bearings because of intervals which allows generated friction heat to cool down. This enables a PV value to remain relatively high. The disadvantage of intermittent operations is that frequent operational interruptions tend to cause inadequate amount. Moreover, resulting in increasing wear occur when restarting. The heavy load imposed in an intermittent operation is liable

to cause boundary lubrication condition. A bearing should be selected which safely endures friction and wear in that condition. Oil-containing bearings self-supply lubricant oil to the sliding surface, and exhibit excellent lubricant-maintaining capability. CSB650# in particular has a high load carrying capacity and displays excellent performance in intermittent operations with high load because of the tough film of solid lubricants covers the sliding surface.

Bearing Temperature

The life of a bearing is greatly influenced by environment temperature and friction heat that is generated from oscillating and reciprocating motion. For a high temperature application, the PV value of the bearing should be limited to a small value. The heat resistance of plastic bearings are generally inferior to that of metallic bearings. In particular thermoplastic resins poor resistance to heat. They also have high thermal expansion rate. Consequently to maintain a min. Required clearance, careful dimensional control is necessary when the bearings of these materials are designed.

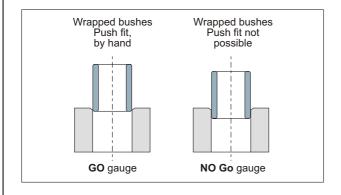


BEARINGS DIMENSIONAL INSPECTION

The wrapped or thin wall bushes are not accurately mensurable in the unfitted condition. Here we list the standard measurement method.

Testing the outside diameter

The outside diameter of CSB wrapped plain bearings that have to have the interference fit (press fit) in the housing are tested with the aid of a special device.

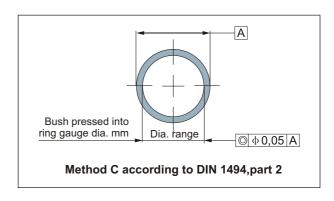


In this test the outside diameter is measured under prestressing force according to DIN 1494, part 2, test A to determine the deviation Delta Z from a standard value. Test load and permissible deviation are calculated according to DIN 1494.

Normally this method is suitable for large series.

The simplified method for testing the outside diameter of plain bearings is based on DIN 1494 Method B. The test uses GO and NO GO ring gauge. The corresponding diameters of the GO and NO GO ring gauges are selected according to the DIN standard.

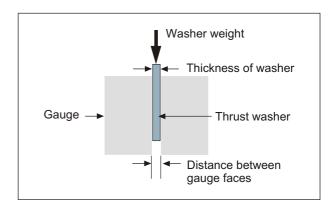
Normally this method is suitable for smaller series.



Testing the inside diameter

The inside diameter is tested according to DIN1494, part 2, test C. To perform this test, the bushes should be fixed in a ring gauge (table 5 according to DIN1494 part 1) in this condition the inside diameter can be tested with GO or NO GO plug gauges.

Normally this method is suitable for smaller series. The big size bushes recommend use of a three-point micrometer is preferable.



Testing the thrust washer

Beside the thickness, the flatness of a washer is of particular importance as it has impact on the life of both the washer and its mate.

We use very helpful test in which the washer falls through the gap between two plain parallel plates of a gauge under its dead weight. The plates must be big enough to cover the whole washer.

BEARINGS DIMENSIONAL INSPECTION

Machined bushing like CSB650#, CSB600#, CSB450#, CSB200 etc are high-precision parts. Therefore precision equipment is needed to check them. Here we list the popular check method.

The tester used to check a bushing depends on the quality standard and the number of bushings involved.

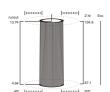
RESULTS	Filt. Type	2CR
JDB3	Filter	1-50 upr
3.81 um	No. Planes	2
5.25 um	Profile	100.0%
2.39 um	Meas mode	External
3.19 um	Phase	240.4 deg
126.0 deg	Angle	89.996 deg
	Meas. date	29-04-2001
1.00 um	Meas. Time	15:07:48
SPINDLE		
	JDB3 3.81 um 5.25 um 2.39 um 3.19 um 126.0 deg	JDB3 Filter 3.81 um No. Planes 5.25 um Profile 2.39 um Meas mode 3.19 um Phase 126.0 deg Angle Meas. date 1.00 um Meas. Time

LS ROUNDNES	S RESULTS	Datum	SPINDLE
Feature name	JDB2	Filter type	2CR
Feature no.	03	Filter	1-50 upr
R	29.639 um	Profile	100.0%
0	1.58 um	Meas mode	External
E	17.06 um	Meas. Date	29-04-2001
_	234.1 deg	Meas. Time	14:31:18
7	34.52um		
Scale	1.00 um		
Z height	76.5 mm		


LS CYLINDER	RESULTS	Filter type	2CR
Feature name	JDB2T1	Filter	1-50 upr
4	1.71 um	No. Planes	2
27	40.03 um	Profile	100.0%
① ISO	39.85 um	Meas mode	External
Max par val	-0.75 um	Phase	241.7 deg
Max par ang	153.0 deg	Angle	89.976 deg
		Meas. date	29-04-2001
Scale	1.00 um	Meas. Time	14:37:58
Datum	JDB2T		

LS CYLINDER	RESULTS	Filt. Type	2CR
Feature name	JDB3	Filter	1-50 upr
♦	3.81 um	No. Planes	2
21	5.25 um	Profile	100.0%
		Meas mode	External
Max par val	3.19 um	Phase	240.4 deg
Max par ang	126.0 deg	Angle	89.996 deg
		Meas. date	29-04-2001
Scale	1.00 um	Meas. Time	15:07:48
Datum	SPINDLE		

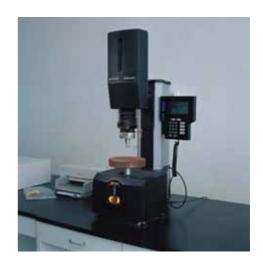
LS CYLINDER	RESULTS	Filt. Type	2CR
Feature name	JDB3	Filter	1-50 upr
\$	13.78 um	No. Planes	2
21	13.48 um	Profile	100.0%
① ISO	0.9 um	Meas mode	External
Max par val	13.16 um	Phase	246.1 deg
Max par ang	78.0 deg	Angle	89.994 deg
		Meas. date	29-04-2001
Scale	2.00 um	Meas. Time	15:12:47
Datum	SPINDLE		





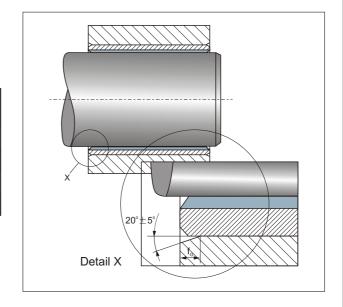
LS CYLINDER	RESULTS	Filt. type	2CR
Feature name	JDB2T	Filter	1-50 upr
\$	2.05 um	No. Planes	2
21	35.39 um	Profile	100.0%
		Meas mode	External
Max par val	-1.07 um	Phase	235.7 deg
Max par ang	177.0 deg	Angle	89.942 deg
		Meas. date	29-04-2001
Scale	1.00 um	Meas. Time	14:34:02
Datum	SDINIDI E		

LS ROUNDNES	SS RESULTS
Feature name	JDB2
Feature num	04
R	29.639 mm
0	2.19 um
E	16.12 um
_	234.2 deg
7	32.64 um
Scale	0.50 um
Z height	74.5 mm
Datum	SPINDLE
Filter type	2CR
Filter	1-50 upr
Profile	100.0 %
Meas mode	External
Meas. date	29-04-2001
Meas. Time	14:31:52



LS ROUNDNES	SS RESULTS
Feature name	JDB3
Feature num	00
R	33.476 mm
0	2.51 um
E	1.19 um
_	219.6 deg
7	4.60 um
Scale	1.00 um
Z height	67.5 mm
Datum	SPINDLE
Filter type	2CR
Filter	1-50 upr
Profile	100.0 %
Meas mode	External
Meas. date	29-04-2001
Meas. time	15:07:48

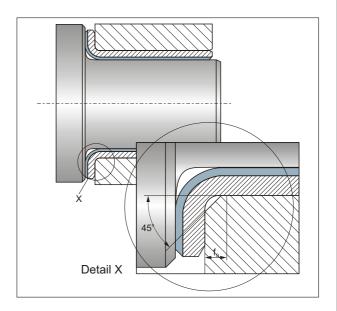
LS CYLINDER	RESULTS	Datum	SPINDLE
Feature name	JDB3	Filt. type	2CR
Feature no.	01	Filter	1-50 upr
R	33.475 mm	Profile	100.0%
0	3.09 um	Meas mode	External
E	0.46 um	Meas. date	29-04-2001
_	129.8 deg	Meas. Time	14:59:36
7	3.45 um		
Scale	2.00 um		
Z height	49.1 mm		


DESIGN OF BEARING ARRANGEMENTS

Housing

Bushes

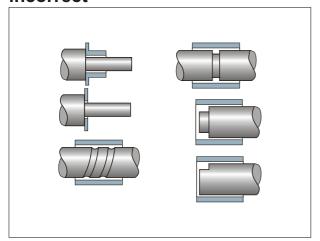
The housing bore should have a chamfer $f_{\rm e}x20^{\circ}\pm5^{\circ},$ This chamfer makes it easier to press the bushes into the housing.


Housing bore diameter d _s	Chamfer with f _o
d _G ≤30	0.8±0.3
30 <d<sub>s≤80</d<sub>	1.2±0.4
80 <d<sub>g≤180</d<sub>	1.8±0.8
180 <d<sub>G</d<sub>	2.5±1.0

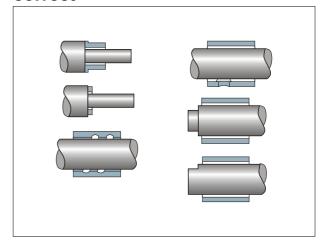
Flange Bushes

The radius at the transition from the radial to the axial component must be taken into consideration for flange bushes. A sufficiently large chamfer must be provided on the housing to prevent the flanged bushes fouling in the area of the radius. Sufficient support must be provided for the flange in applications with axial loading.

Housing bore diameter d _e	Chamfer with f _g
d _g ≤10	1.2±0.2
10 <d<sub>G</d<sub>	1.7±0.2

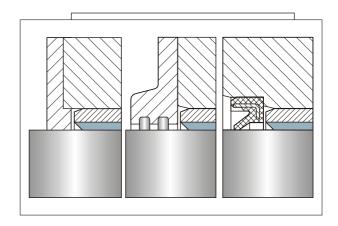

DESIGN OF BEARING ARRANGEMENTS

Shaft

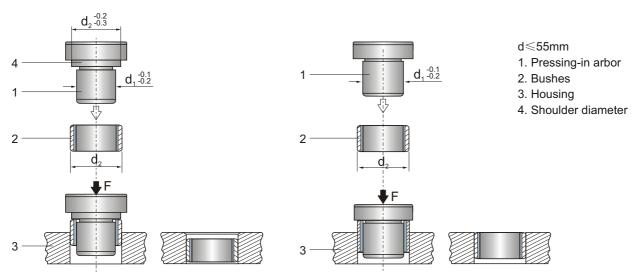

To make fitting easier, the shaft ends should be chamfered. All sharp edges which could damage the sliding layer must be broken. Higher surface qualities will extend the service life only slightly whereas greater

roughness depths will reduce the service life considerably. Ground or drawn surfaces are preferred. The surface finish of the mating material should be between Ra 0.2-Ra0.8 um obtained by grinding normally.

incorrect

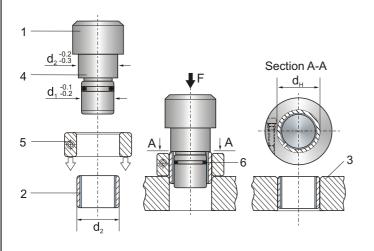


correct


Seals

If increased levels of contamination occur or the bearing is used in an aggressive environment, the bearing position should be protected. The usual solution is to design the surrounding structure so that the contamination cannot reach the bearing position. A collar of grease may also be used or shaft seals if the level of contamination is particularly high.

BEARINGS INSTALLATION


Bushes

In most cases, CSB slide bearings are used with a pressfit in the same manner as general sleeve bearings. Fit the bearings into housings using mandrels or press. In case of a relatively large interference, provide both the I.D. of the housing and the O.D. of the bearing with chamfers, and fit the bearing into the housing with mandrel for easy installation. When using plastic bearings in an environment where temperature fluctuates, install the bearings using set screws, keys or flange pins for better results.

For some special application like CSB650# bushes for

injection molding machines, can be used shrink fitting. This is the preferred method of inserting a bush in its housing and provides the optimum interference fit without risking bearing damage during press fitting. Frozen carbon dioxide (Co_2) should be packed around the bearing for up to 2 hours, depending on the cross section of bush to be cooled. Once removed from the Co_2 , the bush should be offered to its housing without delay. It should fit without force, gravity will usually be adequate for a vertical installation.

- d≥55mm
- 1. Pressing-in arbor
- 2. Bushes
- 3. Housing
- 4. Shoulder diameter
- 5. Auxiliary ring
- 6. O ring

d ₂ mm	d _н mm
55 ≤ d₂ ≤ 100	d ₂ +0.28 +0.25
100 <d₂ 200<="" th="" ≤=""><th>$d_{2}^{+0.40}_{+0.36}$</th></d₂>	$d_{2}^{+0.40}_{+0.36}$
200 <d₂≤305< th=""><th>d₂ +0.50 +0.46</th></d₂≤305<>	d ₂ +0.50 +0.46

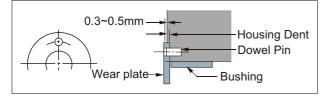
BEARINGS INSTALLATION

At the on-start of operation, contact surfaces of shaft and bearings are smooth, however, microscopic irregularities are inevitable to develop after continued use. A deviation from true center alignment may also exist. Thus, the initial contact between sliding surface could be local. Do not immediately start a regular loaded operation, it may

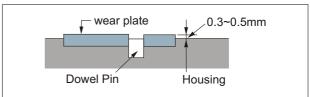
result in damaging the gearing surface, leading to a shorter service life. Instead, gradually break-in operations so to smooth out the microscopic irregularities, and allow the entire pressure support area to slowly come in contact without causing damage.

Storage

CSB slide bearings are supplied packed in boxes or in a bag in a box. The bearings should be stored in clean, rust proof manner. The thin wall bearings like EP should be protected from deformation during storage. Do not store


in locations exposed to high temperatures, high humidity, or the direct rays of the sun, and do not place under a heavy load also.

Initial operation


Thrust washers and plate

We recommended to provide housing with hollowed dents for installing thrust washers and sliding plates. Dowel pins should be applied to prevent turning.

1. Dowel pin application(thrust washer)

2. Inlaid installation(plate)

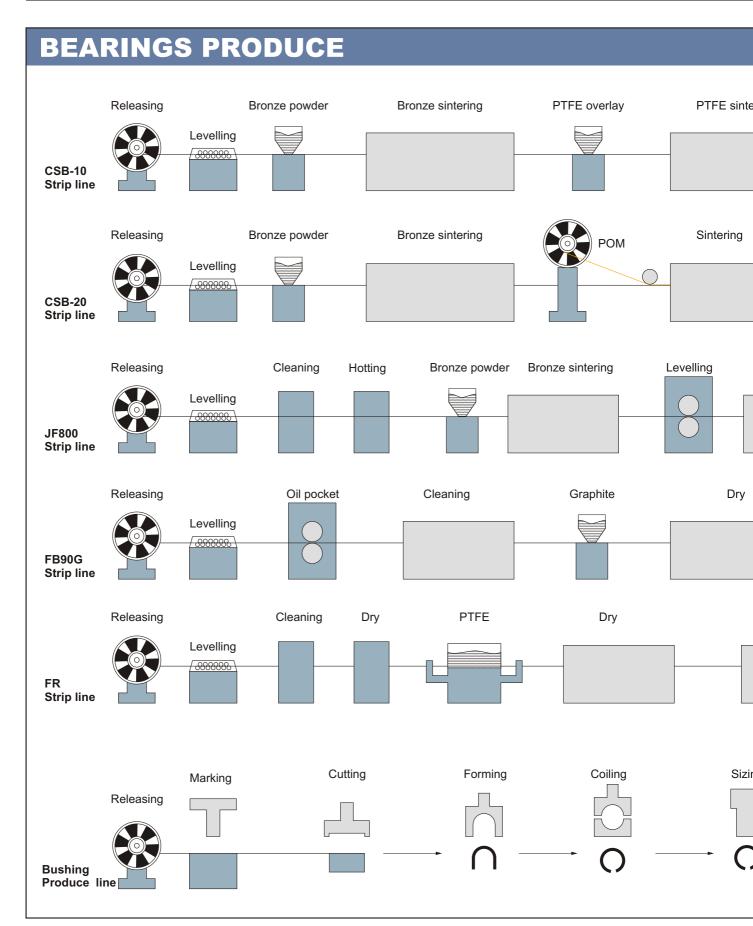
3. Flat head screw application

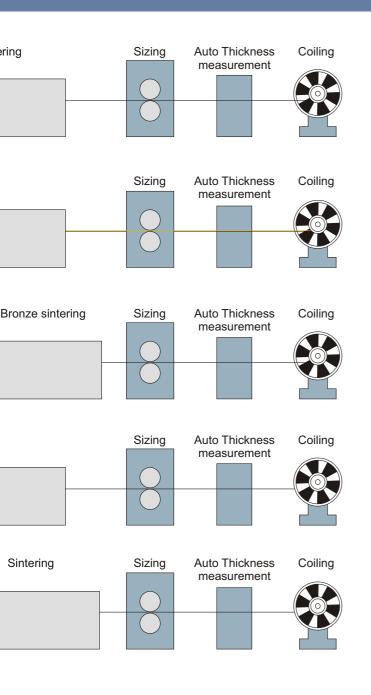
Alternative fixing methods

Laser welding, adhesive fixing or soft soldering have also been used for economical alternative fixing if the interference fit on the bush is not sufficient or it is uneconomical to use dowel pins or screws for trust washer and plate. When using laser welding or other higher temperature manners should be considering not exceed the max. slide layer temp. Can be bear. The sliding layer must always be kept free from adhesives.

SHAFT TOLERANCE TABLE (ISO)

	n	ıt٠	m	m
U		IL.		


																			Un	it:mm														
\	\vee	c9	d8	e7	e8	f7	g6	h5	h6	h7	h8	js6	js7	k6	m6	n6	p6	p7	r6	s6														
_	3	-60 -85	-20 -34	-14 -24	-14 -28	-6 -16	-2 -8	0 -4	0 -6	0 -10	0 -14	±3	±5	+6 0	+8 +2	+10 +4	+12 +6	+16 +6	+16 +10	+20 +14														
3	6	-70 -100	-30 -48	-20 -32	-20 -38	-10 -22	-4 -12	0 -5	0 -8	0 -12	0 -18	±4	±6	+9 +1	+12 +4	+16 +8	+20 +12	+24 +12	+23 +15	+27 +19														
6	10	-80 -116	-40 -62	-25 -40	-25 -47	-13 -28	-5 -14	0 -6	0 -9	0 -15	0 -22	±4.5	±7	+10 +1	+15 +6	+19 +10	+24 +15	+30 +15	+28 +19	+32 +23														
10	18	-95 -138	-50 -77	-32 -50	-32 -59	-16 -34	-6 -17	0 -8	0 -11	0 -18	0 -27	±5.5	±9	+12 +1	+18 +7	+23 +12	+29 +18	+36 +18	+34 +23	+39 +28														
18	24	-110	-65	-40	-40	-20	-7	0	0	0	0	±6.5	±10	+15	+21	+28	+35	+43	+41	+48														
24	30	-162	-98	-61	-73	-41	-20	-9	-13	-21	-33	0.0	= 10	+2	+8	+15	+22	+22	+28	+35														
30	40	-120 -182	-80 -119	-80		-50	-50	-25	-9	0	0	0	0	±8	±12	+18	+25	+33	+42	+51	+50	+59												
40	50	-130 -192		-75	-89	-50	-25	-11	-16	-25	-39			+2	+9	+17	+26	+26	+34	+43														
50	65	-140 -214	-100		-60			-60 -106	-30 -60	-10 -29	0 -13	0 -19	0 -30	0 -46	±9.5	±15	+21 +2	+30 +11	+39 +20	+51	+62	+60 +41	+72 +53											
65	80	-150 -224	-146	-90	-106	-60	-29	-13	-19	-30	-40			+2	+11	+20	+32	+32	+62 +43	+78 +59														
80	100	-170 -257	-120 -174	-72 -107	-72 -126	-36 -71	-12 -34	0 -15	0 -22	0 -35	0 -54	±11	±17	+25 +3	+35 +13	+45 +23	+59 +37	+72 +37	+73 +51	+93 +71														
100	120	-180 -267	-174	-107	-120	-71	-04	-13	-22	-55	-54			+3	+13	+23	+37	+37	+76 +54	+101 +79														
120	140	-200 -300	445	0.5	0.5	40	4.	•	•			. 40 5	- 00	. 00	. 40	. 50	. 00	. 00	+88 +63	+117 +92														
140	160	-210 -310	-145 -208	-85 -125	-85 -148	-43 -83	-14 -39	0 -18	0 -25	-40	-63	±12.5	±20	+28 +3	+40 +15	+52 +27	+68 +43	+83 +43	+90 +65	+125 +100														
160	180	-230 -330																	+93 +68	+133 +108														
180	200	-240 -355	-170 -242		400			400	400	400	100	100	100	100	400	,	-100	-100	100		15	•	•		0					. 00	. 70	. 00	+106 +77	+151 +122
200	225	-260 -375		-100 -146	-100 -172	-50 -96	-15 -44	-20	-29	-46	-72	±14.5	±23	+33 +14	+46 +17	+60 +31	+79 +50	+96 +50	+109 +80	+159 +130														
225	250	-280 -395																			+113 +84	+169 +140												
250	280	-300 -430	-190 -271	-110 -162	-110 -191	-56 -108	-17 -49	0 -23	0 -32	0 -52	0 -81	±16	±26	+36 +4	+52 +20	+66 +34	+88 +56	+108 +56	+126 +94	+190 +158														
280	315	-330 -460	-211	102	131	100	-40	-20	-02	-02	-01			, 4	120	104	130	130	+130 +98	+202 +170														
315	355	-360 -500	-210 -299	-125 -182	-125 -214	-62 -119	-18 -54	0 -25	0 -36	0 -57	0 -89	±18	±28	+40 +4	+57 +21	+73 +37	+98 +62	+119 +62	+114 +108	+226 +190														
355	400	-400 -540	200	102	217	113	-04	20	-00	0,				, 4	, 2 1	.01	. 02	. 02	+150 +114	+244 +208														
400	450	-440 -595	-230 -327	-135 -198	-135 -232	-68 -131	-20 -60	0 -27	0 -40	0 -63	0 -97	±20	±31	+45 +5	+63 +23	+80 +40	+108 +68	+131 +68	+166 +126	+272 +232														
450	500	-480 -635	-327	-198	202	107	-00	LI		-00	- 31			. 3	.20	. 40	. 00	. 00	+172 +132	+292 +252														


HOUSING TOLERANCE TABLE(ISO)

Unit:mm

		Unit:mm											IL.IIIIII											
\Rightarrow	<	B10	C9	D8	E7	E8	F7	G7	H6	H7	H8	JS7	K7	M7	N7	P7	R7	S7	Т7					
_	3	+180 +140	+85 +60	+34 +20	+24 +14	+28 +14	+16 +6	+12 +2	+6 0	+10 0	+14 0	±5	0 -10	-2 -12	-4 -14	-6 -16	-10 -20	-14 -24	_					
3	6	+188 +140	+100 +70	+48 +30	+32 +20	+38 +20	+22 +10	+16 +4	+8 0	+12 0	+18 0	±6	+3 -9	0 -12	-4 -16	-8 -20	-11 -23	-15 -27	_					
6	10	+208 +150	+116 +80	+62 +40	+40 +25	+47 +25	+28 +13	+20 +5	+9 0	+15 0	+22	±7	+5 -10	0 -15	-4 -19	-9 -24	-13 -28	-17 -32	_					
10	14	+200	+138	+77 +50	+77	+50	+59	+34	+24	+11	+18	+27	±9	+6	0	-5	-11	-16	-21					
14	18	+150	+95		+32	+32	+16	+6	0	0	0	±9	-12	-18	-23	-29	-34	-39						
18	24	+244	+162	+98	+61 -	+73	+41	+28	+13	+21	+33		+6	0	-7	-14	-20	-27	_					
24	30	+160	+110	+65	+40	+40	+20	+7	0	0	0	±10	-15	-21	-28	-35	-41	-48	-33 -54					
30	40	+270 +170	+182 +120	+119	+75	+89	+50	+34	+16	+25	+39	±12	+7	0	-8	-17	-25	-34	-39 -64					
40	50	+280 +180	+192 +130	+80	+50	+50	+25	+9	0	0	0	12	-18	-25	-33	-42	-50	-59	-45 -70					
50	65	+310 +190	+214 +140	+146			+146	+146	+146		+106	+60	+40	+19	+30	+46	±15	+9	0	-9	-21	-30 -60	-42 -72	-55 -85
65	80	+320 +200	+224 +150	+100	+60	+60	+30	+10	0	0	0	⊥ 13	-21	-30	-39	-51	-32 -62	-48 -78	-64 -94					
80	100	+360 +220	+257 +170	+174	+107 +72	+125 +72	+71	+47	+22	+35	+54 0	±17	+10 -25	0 -35	-10 -45	-24 -59	-38 -73	-58 -93	-78 -113					
100	120	+380 +240	+267 +180	+120			+36	+12	0	0							-41 -76	-66 -101	-91 -126					
120	140	+420 +260	+300 +200						+25				+12 -28	0 -40	-12 -52	-28 -68	-48 -88	-77 -117	-107 -147					
140	160	+440 +280	+310 +210	+208 +145	+125 +85	+148 +85	+83 +43	+54 +14		+40 0	+63 0	±20					-50 -90	-85 -125	-119 -159					
160	180	+470 +310	+330 +230														-53 -93	-93 -133	-131 -171					
180	200	+525 +340	+355 +240														-60 -106	-105 -151	-149 -195					
200	225	+565 +380	+375 +260	+242 +170	+146 +100	+172 +100	+96 +50	+61 +15	+29 0	+46 0	+72 0	±23	+13 -33	0 -46	-14 -60	-33 -79	-63 -109	-113 -159	-163 -209					
225	250	+605 +420	+395 +280														-67 -113	-123 -169	-179 -225					
250	280	+690 +480	+430 +300		+162	+191	+108	+69	+32	+52	+81	±26	+16	0	-14	-36	-74 -126	-138 -190	-198 -250					
280	315	+750 +540	+460 +330	+190	+110	+110	+56	+17	0	0	0	120	-36	-52	-66	-88	-78 -130	-150 -202	-220 -272					
315	355	+830 +600	+500 +360	+299	+182	+214 +125	+119	+75	+36	+57	+89	±28	+17	0	-16	-41	-87 -144	-169 -226	-247 -304					
355	400	+910 +680	+540 +400	+210 +1	+125		+62	+18	0	0	0		-40	-57	-73	-98	-93 -150	-187 -244	-273 -330					
400	450	+1010 +760	+595 +440	+327	+198	+232	+131	+83	+40	+63	+97	±31	+18	0	-17	-45	-103 -166	-209 -272	-307 -370					
450	500	+1090 +840	+635 +480	+230	+135	+135	+68	+20	0	0	0	131	-45	-63	-80	-108	-109 -172	-229 -292	-337 -400					

Chamfering

Tolerance testing

BEARINGS PRODUCE

CNC machines workroom

CNC machines (Japan)

Honing machines (USA)

Lathe machines workroom

CNC Machines

CSB EP compound bearings workroom

Grinding Machines

Lathe Machines

Friction welding

R&D CENTER

CSB Testing center

Instron 5567 material testing (USA)

Thermomechanical analysis(German)

Accelerated weathering tester(USA)

Electronic scanning microscope(Japan)

Dynatup pendulum impact machine(USA)

Linear motion testing machine

Oscillation motion testing machine

High load PV testing

MMD testing machine

Low load high speed PV testing

Micrograph

Spectrograph machine

AUTOMOTIVE INDUSTRIES

We supply CSB 3-layer dry/marginal bearings and EP series self-lubricating bearings for automotive industries.

Bushes for accelerator, brake, clutch pedal

Bushes for reflector control

Bushes for windscreen wipers

Bushes for windscreen lift system

Bushes for roof window system

Bushes for gear lever

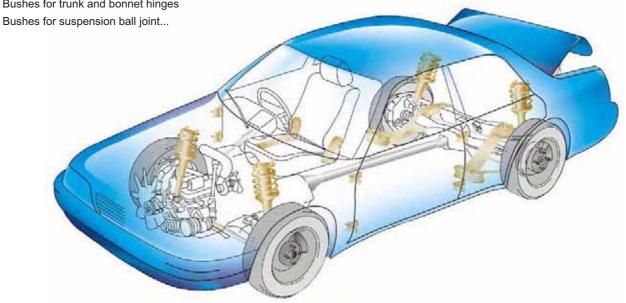
Bushes for door hinges

Bushes for door lock

Bushes for seat belt system

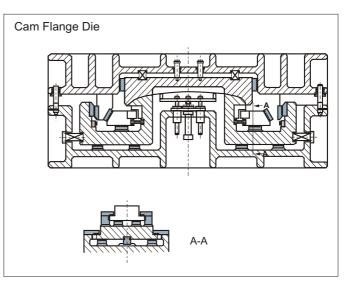
Bushes for engineer

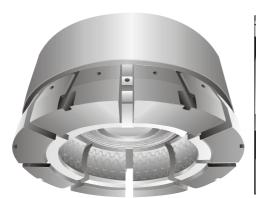
Bushes for starter motor

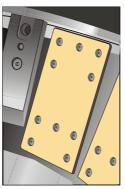

Bushes for chair control

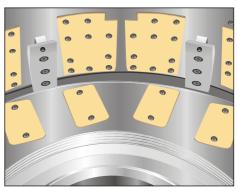
Bushes for shock absorbers

Bushes for carburetor









CSB 650#/250#/850# oilless bearings apply in automotive produce tools.

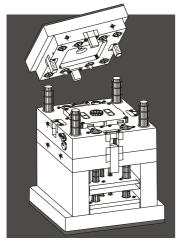

CSB850# Bimetal self-lubricating strip applied in segment tire mold.

OA MACHINES & FITNESS EQUIPMENTS

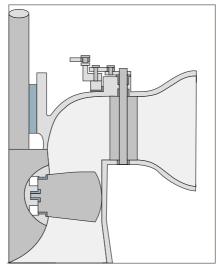
We supply CSB 3-layer dry/marginal bearings and EP series self-lubricating bearings for OA machines, ATM machines, food industries, chemical machines, sports machines and fitness equipments and so on. The advantage compare with the metal bushes is lower weight and lower cost...

CONSTRUCTION & AGRICULTURAL MACHINES

The CSB650#/250#/200# can apply for high load with lower speed application like bulldozer, grab, scraper, crane and so on construction machines.



PLASTIC MACHINES



CIVIL PROJECTION

CSB850#/650# Self-lubricating materials applied in water turbine parts.

The good wear resistance and maintenance-free solution bearings can be used in civil industries.


Hydraulic power station

Dam-gate

Sluice-gate

Bridge oilless bearings...

CSB650#/CSB850 is good material for this kind industries.

